|
|
@@ -0,0 +1,428 @@
|
|
|
+/* sha1.c - Functions to compute SHA1 message digest of files or
|
|
|
+ memory blocks according to the NIST specification FIPS-180-1.
|
|
|
+
|
|
|
+ Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2008, 2009, 2010 Free
|
|
|
+ Software Foundation, Inc.
|
|
|
+
|
|
|
+ This program is free software; you can redistribute it and/or modify it
|
|
|
+ under the terms of the GNU General Public License as published by the
|
|
|
+ Free Software Foundation; either version 3, or (at your option) any
|
|
|
+ later version.
|
|
|
+
|
|
|
+ This program is distributed in the hope that it will be useful,
|
|
|
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
+ GNU General Public License for more details.
|
|
|
+
|
|
|
+ You should have received a copy of the GNU General Public License
|
|
|
+ along with this program; if not, write to the Free Software Foundation,
|
|
|
+ Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
+
|
|
|
+/* Written by Scott G. Miller
|
|
|
+ Credits:
|
|
|
+ Robert Klep <robert@ilse.nl> -- Expansion function fix
|
|
|
+*/
|
|
|
+
|
|
|
+#include <config.h>
|
|
|
+
|
|
|
+#include "sha1.h"
|
|
|
+
|
|
|
+#include <stddef.h>
|
|
|
+#include <stdlib.h>
|
|
|
+#include <string.h>
|
|
|
+
|
|
|
+#if USE_UNLOCKED_IO
|
|
|
+# include "unlocked-io.h"
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifdef WORDS_BIGENDIAN
|
|
|
+# define SWAP(n) (n)
|
|
|
+#else
|
|
|
+# define SWAP(n) \
|
|
|
+ (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
|
|
|
+#endif
|
|
|
+
|
|
|
+#define BLOCKSIZE 32768
|
|
|
+#if BLOCKSIZE % 64 != 0
|
|
|
+# error "invalid BLOCKSIZE"
|
|
|
+#endif
|
|
|
+
|
|
|
+/* This array contains the bytes used to pad the buffer to the next
|
|
|
+ 64-byte boundary. (RFC 1321, 3.1: Step 1) */
|
|
|
+static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
|
|
|
+
|
|
|
+
|
|
|
+/* Take a pointer to a 160 bit block of data (five 32 bit ints) and
|
|
|
+ initialize it to the start constants of the SHA1 algorithm. This
|
|
|
+ must be called before using hash in the call to sha1_hash. */
|
|
|
+void
|
|
|
+sha1_init_ctx (struct sha1_ctx *ctx)
|
|
|
+{
|
|
|
+ ctx->A = 0x67452301;
|
|
|
+ ctx->B = 0xefcdab89;
|
|
|
+ ctx->C = 0x98badcfe;
|
|
|
+ ctx->D = 0x10325476;
|
|
|
+ ctx->E = 0xc3d2e1f0;
|
|
|
+
|
|
|
+ ctx->total[0] = ctx->total[1] = 0;
|
|
|
+ ctx->buflen = 0;
|
|
|
+}
|
|
|
+
|
|
|
+/* Copy the 4 byte value from v into the memory location pointed to by *cp,
|
|
|
+ If your architecture allows unaligned access this is equivalent to
|
|
|
+ * (uint32_t *) cp = v */
|
|
|
+static inline void
|
|
|
+set_uint32 (char *cp, uint32_t v)
|
|
|
+{
|
|
|
+ memcpy (cp, &v, sizeof v);
|
|
|
+}
|
|
|
+
|
|
|
+/* Put result from CTX in first 20 bytes following RESBUF. The result
|
|
|
+ must be in little endian byte order. */
|
|
|
+void *
|
|
|
+sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
|
|
|
+{
|
|
|
+ char *r = resbuf;
|
|
|
+ set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A));
|
|
|
+ set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B));
|
|
|
+ set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C));
|
|
|
+ set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D));
|
|
|
+ set_uint32 (r + 4 * sizeof ctx->E, SWAP (ctx->E));
|
|
|
+
|
|
|
+ return resbuf;
|
|
|
+}
|
|
|
+
|
|
|
+/* Process the remaining bytes in the internal buffer and the usual
|
|
|
+ prolog according to the standard and write the result to RESBUF. */
|
|
|
+void *
|
|
|
+sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
|
|
|
+{
|
|
|
+ /* Take yet unprocessed bytes into account. */
|
|
|
+ uint32_t bytes = ctx->buflen;
|
|
|
+ size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
|
|
|
+
|
|
|
+ /* Now count remaining bytes. */
|
|
|
+ ctx->total[0] += bytes;
|
|
|
+ if (ctx->total[0] < bytes)
|
|
|
+ ++ctx->total[1];
|
|
|
+
|
|
|
+ /* Put the 64-bit file length in *bits* at the end of the buffer. */
|
|
|
+ ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
|
|
|
+ ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
|
|
|
+
|
|
|
+ memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
|
|
|
+
|
|
|
+ /* Process last bytes. */
|
|
|
+ sha1_process_block (ctx->buffer, size * 4, ctx);
|
|
|
+
|
|
|
+ return sha1_read_ctx (ctx, resbuf);
|
|
|
+}
|
|
|
+
|
|
|
+/* Compute SHA1 message digest for bytes read from STREAM. The
|
|
|
+ resulting message digest number will be written into the 16 bytes
|
|
|
+ beginning at RESBLOCK. */
|
|
|
+int
|
|
|
+sha1_stream (FILE *stream, void *resblock)
|
|
|
+{
|
|
|
+ struct sha1_ctx ctx;
|
|
|
+ size_t sum;
|
|
|
+
|
|
|
+ char *buffer = malloc (BLOCKSIZE + 72);
|
|
|
+ if (!buffer)
|
|
|
+ return 1;
|
|
|
+
|
|
|
+ /* Initialize the computation context. */
|
|
|
+ sha1_init_ctx (&ctx);
|
|
|
+
|
|
|
+ /* Iterate over full file contents. */
|
|
|
+ while (1)
|
|
|
+ {
|
|
|
+ /* We read the file in blocks of BLOCKSIZE bytes. One call of the
|
|
|
+ computation function processes the whole buffer so that with the
|
|
|
+ next round of the loop another block can be read. */
|
|
|
+ size_t n;
|
|
|
+ sum = 0;
|
|
|
+
|
|
|
+ /* Read block. Take care for partial reads. */
|
|
|
+ while (1)
|
|
|
+ {
|
|
|
+ n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
|
|
|
+
|
|
|
+ sum += n;
|
|
|
+
|
|
|
+ if (sum == BLOCKSIZE)
|
|
|
+ break;
|
|
|
+
|
|
|
+ if (n == 0)
|
|
|
+ {
|
|
|
+ /* Check for the error flag IFF N == 0, so that we don't
|
|
|
+ exit the loop after a partial read due to e.g., EAGAIN
|
|
|
+ or EWOULDBLOCK. */
|
|
|
+ if (ferror (stream))
|
|
|
+ {
|
|
|
+ free (buffer);
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ goto process_partial_block;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* We've read at least one byte, so ignore errors. But always
|
|
|
+ check for EOF, since feof may be true even though N > 0.
|
|
|
+ Otherwise, we could end up calling fread after EOF. */
|
|
|
+ if (feof (stream))
|
|
|
+ goto process_partial_block;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Process buffer with BLOCKSIZE bytes. Note that
|
|
|
+ BLOCKSIZE % 64 == 0
|
|
|
+ */
|
|
|
+ sha1_process_block (buffer, BLOCKSIZE, &ctx);
|
|
|
+ }
|
|
|
+
|
|
|
+ process_partial_block:;
|
|
|
+
|
|
|
+ /* Process any remaining bytes. */
|
|
|
+ if (sum > 0)
|
|
|
+ sha1_process_bytes (buffer, sum, &ctx);
|
|
|
+
|
|
|
+ /* Construct result in desired memory. */
|
|
|
+ sha1_finish_ctx (&ctx, resblock);
|
|
|
+ free (buffer);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The
|
|
|
+ result is always in little endian byte order, so that a byte-wise
|
|
|
+ output yields to the wanted ASCII representation of the message
|
|
|
+ digest. */
|
|
|
+void *
|
|
|
+sha1_buffer (const char *buffer, size_t len, void *resblock)
|
|
|
+{
|
|
|
+ struct sha1_ctx ctx;
|
|
|
+
|
|
|
+ /* Initialize the computation context. */
|
|
|
+ sha1_init_ctx (&ctx);
|
|
|
+
|
|
|
+ /* Process whole buffer but last len % 64 bytes. */
|
|
|
+ sha1_process_bytes (buffer, len, &ctx);
|
|
|
+
|
|
|
+ /* Put result in desired memory area. */
|
|
|
+ return sha1_finish_ctx (&ctx, resblock);
|
|
|
+}
|
|
|
+
|
|
|
+void
|
|
|
+sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
|
|
|
+{
|
|
|
+ /* When we already have some bits in our internal buffer concatenate
|
|
|
+ both inputs first. */
|
|
|
+ if (ctx->buflen != 0)
|
|
|
+ {
|
|
|
+ size_t left_over = ctx->buflen;
|
|
|
+ size_t add = 128 - left_over > len ? len : 128 - left_over;
|
|
|
+
|
|
|
+ memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
|
|
|
+ ctx->buflen += add;
|
|
|
+
|
|
|
+ if (ctx->buflen > 64)
|
|
|
+ {
|
|
|
+ sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
|
|
|
+
|
|
|
+ ctx->buflen &= 63;
|
|
|
+ /* The regions in the following copy operation cannot overlap. */
|
|
|
+ memcpy (ctx->buffer,
|
|
|
+ &((char *) ctx->buffer)[(left_over + add) & ~63],
|
|
|
+ ctx->buflen);
|
|
|
+ }
|
|
|
+
|
|
|
+ buffer = (const char *) buffer + add;
|
|
|
+ len -= add;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Process available complete blocks. */
|
|
|
+ if (len >= 64)
|
|
|
+ {
|
|
|
+#if !_STRING_ARCH_unaligned
|
|
|
+# define alignof(type) offsetof (struct { char c; type x; }, x)
|
|
|
+# define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0)
|
|
|
+ if (UNALIGNED_P (buffer))
|
|
|
+ while (len > 64)
|
|
|
+ {
|
|
|
+ sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
|
|
|
+ buffer = (const char *) buffer + 64;
|
|
|
+ len -= 64;
|
|
|
+ }
|
|
|
+ else
|
|
|
+#endif
|
|
|
+ {
|
|
|
+ sha1_process_block (buffer, len & ~63, ctx);
|
|
|
+ buffer = (const char *) buffer + (len & ~63);
|
|
|
+ len &= 63;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Move remaining bytes in internal buffer. */
|
|
|
+ if (len > 0)
|
|
|
+ {
|
|
|
+ size_t left_over = ctx->buflen;
|
|
|
+
|
|
|
+ memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
|
|
|
+ left_over += len;
|
|
|
+ if (left_over >= 64)
|
|
|
+ {
|
|
|
+ sha1_process_block (ctx->buffer, 64, ctx);
|
|
|
+ left_over -= 64;
|
|
|
+ memcpy (ctx->buffer, &ctx->buffer[16], left_over);
|
|
|
+ }
|
|
|
+ ctx->buflen = left_over;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/* --- Code below is the primary difference between md5.c and sha1.c --- */
|
|
|
+
|
|
|
+/* SHA1 round constants */
|
|
|
+#define K1 0x5a827999
|
|
|
+#define K2 0x6ed9eba1
|
|
|
+#define K3 0x8f1bbcdc
|
|
|
+#define K4 0xca62c1d6
|
|
|
+
|
|
|
+/* Round functions. Note that F2 is the same as F4. */
|
|
|
+#define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
|
|
|
+#define F2(B,C,D) (B ^ C ^ D)
|
|
|
+#define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
|
|
|
+#define F4(B,C,D) (B ^ C ^ D)
|
|
|
+
|
|
|
+/* Process LEN bytes of BUFFER, accumulating context into CTX.
|
|
|
+ It is assumed that LEN % 64 == 0.
|
|
|
+ Most of this code comes from GnuPG's cipher/sha1.c. */
|
|
|
+
|
|
|
+void
|
|
|
+sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
|
|
|
+{
|
|
|
+ const uint32_t *words = buffer;
|
|
|
+ size_t nwords = len / sizeof (uint32_t);
|
|
|
+ const uint32_t *endp = words + nwords;
|
|
|
+ uint32_t x[16];
|
|
|
+ uint32_t a = ctx->A;
|
|
|
+ uint32_t b = ctx->B;
|
|
|
+ uint32_t c = ctx->C;
|
|
|
+ uint32_t d = ctx->D;
|
|
|
+ uint32_t e = ctx->E;
|
|
|
+
|
|
|
+ /* First increment the byte count. RFC 1321 specifies the possible
|
|
|
+ length of the file up to 2^64 bits. Here we only compute the
|
|
|
+ number of bytes. Do a double word increment. */
|
|
|
+ ctx->total[0] += len;
|
|
|
+ if (ctx->total[0] < len)
|
|
|
+ ++ctx->total[1];
|
|
|
+
|
|
|
+#define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n))))
|
|
|
+
|
|
|
+#define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \
|
|
|
+ ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
|
|
|
+ , (x[I&0x0f] = rol(tm, 1)) )
|
|
|
+
|
|
|
+#define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \
|
|
|
+ + F( B, C, D ) \
|
|
|
+ + K \
|
|
|
+ + M; \
|
|
|
+ B = rol( B, 30 ); \
|
|
|
+ } while(0)
|
|
|
+
|
|
|
+ while (words < endp)
|
|
|
+ {
|
|
|
+ uint32_t tm;
|
|
|
+ int t;
|
|
|
+ for (t = 0; t < 16; t++)
|
|
|
+ {
|
|
|
+ x[t] = SWAP (*words);
|
|
|
+ words++;
|
|
|
+ }
|
|
|
+
|
|
|
+ R( a, b, c, d, e, F1, K1, x[ 0] );
|
|
|
+ R( e, a, b, c, d, F1, K1, x[ 1] );
|
|
|
+ R( d, e, a, b, c, F1, K1, x[ 2] );
|
|
|
+ R( c, d, e, a, b, F1, K1, x[ 3] );
|
|
|
+ R( b, c, d, e, a, F1, K1, x[ 4] );
|
|
|
+ R( a, b, c, d, e, F1, K1, x[ 5] );
|
|
|
+ R( e, a, b, c, d, F1, K1, x[ 6] );
|
|
|
+ R( d, e, a, b, c, F1, K1, x[ 7] );
|
|
|
+ R( c, d, e, a, b, F1, K1, x[ 8] );
|
|
|
+ R( b, c, d, e, a, F1, K1, x[ 9] );
|
|
|
+ R( a, b, c, d, e, F1, K1, x[10] );
|
|
|
+ R( e, a, b, c, d, F1, K1, x[11] );
|
|
|
+ R( d, e, a, b, c, F1, K1, x[12] );
|
|
|
+ R( c, d, e, a, b, F1, K1, x[13] );
|
|
|
+ R( b, c, d, e, a, F1, K1, x[14] );
|
|
|
+ R( a, b, c, d, e, F1, K1, x[15] );
|
|
|
+ R( e, a, b, c, d, F1, K1, M(16) );
|
|
|
+ R( d, e, a, b, c, F1, K1, M(17) );
|
|
|
+ R( c, d, e, a, b, F1, K1, M(18) );
|
|
|
+ R( b, c, d, e, a, F1, K1, M(19) );
|
|
|
+ R( a, b, c, d, e, F2, K2, M(20) );
|
|
|
+ R( e, a, b, c, d, F2, K2, M(21) );
|
|
|
+ R( d, e, a, b, c, F2, K2, M(22) );
|
|
|
+ R( c, d, e, a, b, F2, K2, M(23) );
|
|
|
+ R( b, c, d, e, a, F2, K2, M(24) );
|
|
|
+ R( a, b, c, d, e, F2, K2, M(25) );
|
|
|
+ R( e, a, b, c, d, F2, K2, M(26) );
|
|
|
+ R( d, e, a, b, c, F2, K2, M(27) );
|
|
|
+ R( c, d, e, a, b, F2, K2, M(28) );
|
|
|
+ R( b, c, d, e, a, F2, K2, M(29) );
|
|
|
+ R( a, b, c, d, e, F2, K2, M(30) );
|
|
|
+ R( e, a, b, c, d, F2, K2, M(31) );
|
|
|
+ R( d, e, a, b, c, F2, K2, M(32) );
|
|
|
+ R( c, d, e, a, b, F2, K2, M(33) );
|
|
|
+ R( b, c, d, e, a, F2, K2, M(34) );
|
|
|
+ R( a, b, c, d, e, F2, K2, M(35) );
|
|
|
+ R( e, a, b, c, d, F2, K2, M(36) );
|
|
|
+ R( d, e, a, b, c, F2, K2, M(37) );
|
|
|
+ R( c, d, e, a, b, F2, K2, M(38) );
|
|
|
+ R( b, c, d, e, a, F2, K2, M(39) );
|
|
|
+ R( a, b, c, d, e, F3, K3, M(40) );
|
|
|
+ R( e, a, b, c, d, F3, K3, M(41) );
|
|
|
+ R( d, e, a, b, c, F3, K3, M(42) );
|
|
|
+ R( c, d, e, a, b, F3, K3, M(43) );
|
|
|
+ R( b, c, d, e, a, F3, K3, M(44) );
|
|
|
+ R( a, b, c, d, e, F3, K3, M(45) );
|
|
|
+ R( e, a, b, c, d, F3, K3, M(46) );
|
|
|
+ R( d, e, a, b, c, F3, K3, M(47) );
|
|
|
+ R( c, d, e, a, b, F3, K3, M(48) );
|
|
|
+ R( b, c, d, e, a, F3, K3, M(49) );
|
|
|
+ R( a, b, c, d, e, F3, K3, M(50) );
|
|
|
+ R( e, a, b, c, d, F3, K3, M(51) );
|
|
|
+ R( d, e, a, b, c, F3, K3, M(52) );
|
|
|
+ R( c, d, e, a, b, F3, K3, M(53) );
|
|
|
+ R( b, c, d, e, a, F3, K3, M(54) );
|
|
|
+ R( a, b, c, d, e, F3, K3, M(55) );
|
|
|
+ R( e, a, b, c, d, F3, K3, M(56) );
|
|
|
+ R( d, e, a, b, c, F3, K3, M(57) );
|
|
|
+ R( c, d, e, a, b, F3, K3, M(58) );
|
|
|
+ R( b, c, d, e, a, F3, K3, M(59) );
|
|
|
+ R( a, b, c, d, e, F4, K4, M(60) );
|
|
|
+ R( e, a, b, c, d, F4, K4, M(61) );
|
|
|
+ R( d, e, a, b, c, F4, K4, M(62) );
|
|
|
+ R( c, d, e, a, b, F4, K4, M(63) );
|
|
|
+ R( b, c, d, e, a, F4, K4, M(64) );
|
|
|
+ R( a, b, c, d, e, F4, K4, M(65) );
|
|
|
+ R( e, a, b, c, d, F4, K4, M(66) );
|
|
|
+ R( d, e, a, b, c, F4, K4, M(67) );
|
|
|
+ R( c, d, e, a, b, F4, K4, M(68) );
|
|
|
+ R( b, c, d, e, a, F4, K4, M(69) );
|
|
|
+ R( a, b, c, d, e, F4, K4, M(70) );
|
|
|
+ R( e, a, b, c, d, F4, K4, M(71) );
|
|
|
+ R( d, e, a, b, c, F4, K4, M(72) );
|
|
|
+ R( c, d, e, a, b, F4, K4, M(73) );
|
|
|
+ R( b, c, d, e, a, F4, K4, M(74) );
|
|
|
+ R( a, b, c, d, e, F4, K4, M(75) );
|
|
|
+ R( e, a, b, c, d, F4, K4, M(76) );
|
|
|
+ R( d, e, a, b, c, F4, K4, M(77) );
|
|
|
+ R( c, d, e, a, b, F4, K4, M(78) );
|
|
|
+ R( b, c, d, e, a, F4, K4, M(79) );
|
|
|
+
|
|
|
+ a = ctx->A += a;
|
|
|
+ b = ctx->B += b;
|
|
|
+ c = ctx->C += c;
|
|
|
+ d = ctx->D += d;
|
|
|
+ e = ctx->E += e;
|
|
|
+ }
|
|
|
+}
|