corosync.conf.5 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544
  1. .\"/*
  2. .\" * Copyright (c) 2005 MontaVista Software, Inc.
  3. .\" * Copyright (c) 2006 Red Hat, Inc.
  4. .\" *
  5. .\" * All rights reserved.
  6. .\" *
  7. .\" * Author: Steven Dake (sdake@redhat.com)
  8. .\" *
  9. .\" * This software licensed under BSD license, the text of which follows:
  10. .\" *
  11. .\" * Redistribution and use in source and binary forms, with or without
  12. .\" * modification, are permitted provided that the following conditions are met:
  13. .\" *
  14. .\" * - Redistributions of source code must retain the above copyright notice,
  15. .\" * this list of conditions and the following disclaimer.
  16. .\" * - Redistributions in binary form must reproduce the above copyright notice,
  17. .\" * this list of conditions and the following disclaimer in the documentation
  18. .\" * and/or other materials provided with the distribution.
  19. .\" * - Neither the name of the MontaVista Software, Inc. nor the names of its
  20. .\" * contributors may be used to endorse or promote products derived from this
  21. .\" * software without specific prior written permission.
  22. .\" *
  23. .\" * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  24. .\" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  25. .\" * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  26. .\" * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  27. .\" * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  28. .\" * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  29. .\" * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  30. .\" * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  31. .\" * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  32. .\" * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  33. .\" * THE POSSIBILITY OF SUCH DAMAGE.
  34. .\" */
  35. .TH COROSYNC_CONF 5 2006-03-28 "corosync Man Page" "Corosync Cluster Engine Programmer's Manual"
  36. .SH NAME
  37. corosync.conf - corosync executive configuration file
  38. .SH SYNOPSIS
  39. /etc/corosync.conf
  40. .SH DESCRIPTION
  41. The corosync.conf instructs the corosync executive about various parameters
  42. needed to control the corosync executive. The configuration file consists of
  43. bracketed top level directives. The possible directive choices are
  44. .IR "totem { } , logging { }.
  45. These directives are described below.
  46. .TP
  47. totem { }
  48. This top level directive contains configuration options for the totem protocol.
  49. .TP
  50. logging { }
  51. This top level directive contains configuration options for logging.
  52. .TP
  53. event { }
  54. This top level directive contains configuration options for the event service.
  55. .TP
  56. aisexec { }
  57. This top level directive contains configuration options for user privilegies.
  58. .PP
  59. .PP
  60. Within the
  61. .B totem
  62. directive, an interface directive is required. There is also one configuration
  63. option which is required:
  64. .PP
  65. .PP
  66. Within the
  67. .B interface
  68. sub-directive of totem there are four parameters which are required:
  69. .TP
  70. ringnumber
  71. This specifies the ring number for the interface. When using the redundant
  72. ring protocol, each interface should specify separate ring numbers to uniquely
  73. identify to the membership protocol which interface to use for which redundant
  74. ring.
  75. .TP
  76. bindnetaddr
  77. This specifies the address which the corosync executive should bind.
  78. This address should always end in zero. If the totem traffic should
  79. be routed over 192.168.5.92, set bindnetaddr to 192.168.5.0.
  80. This may also be an IPV6 address, in which case IPV6 networking will be used.
  81. In this case, the full address must be specified and there is no automatic
  82. selection of the network interface within a specific subnet as with IPv4.
  83. If IPv6 networking is used, the nodeid field must be specified.
  84. .TP
  85. mcastaddr
  86. This is the multicast address used by corosync executive. The default
  87. should work for most networks, but the network administrator should be queried
  88. about a multicast address to use. Avoid 224.x.x.x because this is a "config"
  89. multicast address.
  90. This may also be an IPV6 multicast address, in which case IPV6 networking
  91. will be used. If IPv6 networking is used, the nodeid field must be specified.
  92. .TP
  93. mcastport
  94. This specifies the UDP port number. It is possible to use the same multicast
  95. address on a network with the corosync services configured for different
  96. UDP ports.
  97. .PP
  98. .PP
  99. Within the
  100. .B totem
  101. directive, there are seven configuration options of which one is required,
  102. five are optional, and one is required when IPV6 is configured in the interface
  103. subdirective. The required directive controls the version of the totem
  104. configuration. The optional option unless using IPV6 directive controls
  105. identification of the processor. The optional options control secrecy and
  106. authentication, the redundant ring mode of operation, maximum network MTU,
  107. and number of sending threads, and the nodeid field.
  108. .TP
  109. version
  110. This specifies the version of the configuration file. Currently the only
  111. valid version for this directive is 2.
  112. .PP
  113. .PP
  114. .TP
  115. nodeid
  116. This configuration option is optional when using IPv4 and required when using
  117. IPv6. This is a 32 bit value specifying the node identifier delivered to the
  118. cluster membership service. If this is not specified with IPv4, the node id
  119. will be determined from the 32 bit IP address the system to which the system
  120. is bound with ring identifier of 0. The node identifier value of zero is
  121. reserved and should not be used.
  122. .TP
  123. secauth
  124. This specifies that HMAC/SHA1 authentication should be used to authenticate
  125. all messages. It further specifies that all data should be encrypted with the
  126. sober128 encryption algorithm to protect data from eavesdropping.
  127. Enabling this option adds a 36 byte header to every message sent by totem which
  128. reduces total throughput. Encryption and authentication consume 75% of CPU
  129. cycles in aisexec as measured with gprof when enabled.
  130. For 100mbit networks with 1500 MTU frame transmissions:
  131. A throughput of 9mb/sec is possible with 100% cpu utilization when this
  132. option is enabled on 3ghz cpus.
  133. A throughput of 10mb/sec is possible wth 20% cpu utilization when this
  134. optin is disabled on 3ghz cpus.
  135. For gig-e networks with large frame transmissions:
  136. A throughput of 20mb/sec is possible when this option is enabled on
  137. 3ghz cpus.
  138. A throughput of 60mb/sec is possible when this option is disabled on
  139. 3ghz cpus.
  140. The default is on.
  141. .TP
  142. rrp_mode
  143. This specifies the mode of redundant ring, which may be none, active, or
  144. passive. Active replication offers slightly lower latency from transmit
  145. to delivery in faulty network environments but with less performance.
  146. Passive replication may nearly double the speed of the totem protocol
  147. if the protocol doesn't become cpu bound. The final option is none, in
  148. which case only one network interface will be used to operate the totem
  149. protocol.
  150. If only one interface directive is specified, none is automatically chosen.
  151. If multiple interface directives are specified, only active or passive may
  152. be chosen.
  153. .TP
  154. netmtu
  155. This specifies the network maximum transmit unit. To set this value beyond
  156. 1500, the regular frame MTU, requires ethernet devices that support large, or
  157. also called jumbo, frames. If any device in the network doesn't support large
  158. frames, the protocol will not operate properly. The hosts must also have their
  159. mtu size set from 1500 to whatever frame size is specified here.
  160. Please note while some NICs or switches claim large frame support, they support
  161. 9000 MTU as the maximum frame size including the IP header. Setting the netmtu
  162. and host MTUs to 9000 will cause totem to use the full 9000 bytes of the frame.
  163. Then Linux will add a 18 byte header moving the full frame size to 9018. As a
  164. result some hardware will not operate properly with this size of data. A netmtu
  165. of 8982 seems to work for the few large frame devices that have been tested.
  166. Some manufacturers claim large frame support when in fact they support frame
  167. sizes of 4500 bytes.
  168. Increasing the MTU from 1500 to 8982 doubles throughput performance from 30MB/sec
  169. to 60MB/sec as measured with evsbench with 175000 byte messages with the secauth
  170. directive set to off.
  171. When sending multicast traffic, if the network frequently reconfigures, chances are
  172. that some device in the network doesn't support large frames.
  173. Choose hardware carefully if intending to use large frame support.
  174. The default is 1500.
  175. .TP
  176. threads
  177. This directive controls how many threads are used to encrypt and send multicast
  178. messages. If secauth is off, the protocol will never use threaded sending.
  179. If secauth is on, this directive allows systems to be configured to use
  180. multiple threads to encrypt and send multicast messages.
  181. A thread directive of 0 indicates that no threaded send should be used. This
  182. mode offers best performance for non-SMP systems.
  183. The default is 0.
  184. .TP
  185. vsftype
  186. This directive controls the virtual synchrony filter type used to identify
  187. a primary component. The preferred choice is YKD dynamic linear voting,
  188. however, for clusters larger then 32 nodes YKD consumes alot of memory. For
  189. large scale clusters that are created by changing the MAX_PROCESSORS_COUNT
  190. #define in the C code totem.h file, the virtual synchrony filter "none" is
  191. recommended but then AMF and DLCK services (which are currently experimental)
  192. are not safe for use.
  193. The default is ykd. The vsftype can also be set to none.
  194. Within the
  195. .B totem
  196. directive, there are several configuration options which are used to control
  197. the operation of the protocol. It is generally not recommended to change any
  198. of these values without proper guidance and sufficient testing. Some networks
  199. may require larger values if suffering from frequent reconfigurations. Some
  200. applications may require faster failure detection times which can be achieved
  201. by reducing the token timeout.
  202. .TP
  203. token
  204. This timeout specifies in milliseconds until a token loss is declared after not
  205. receiving a token. This is the time spent detecting a failure of a processor
  206. in the current configuration. Reforming a new configuration takes about 50
  207. milliseconds in addition to this timeout.
  208. The default is 1000 milliseconds.
  209. .TP
  210. token_retransmit
  211. This timeout specifies in milliseconds after how long before receiving a token
  212. the token is retransmitted. This will be automatically calculated if token
  213. is modified. It is not recommended to alter this value without guidance from
  214. the corosync community.
  215. The default is 238 milliseconds.
  216. .TP
  217. hold
  218. This timeout specifies in milliseconds how long the token should be held by
  219. the representative when the protocol is under low utilization. It is not
  220. recommended to alter this value without guidance from the corosync community.
  221. The default is 180 milliseconds.
  222. .TP
  223. retransmits_before_loss
  224. This value identifies how many token retransmits should be attempted before
  225. forming a new configuration. If this value is set, retransmit and hold will
  226. be automatically calculated from retransmits_before_loss and token.
  227. The default is 4 retransmissions.
  228. .TP
  229. join
  230. This timeout specifies in milliseconds how long to wait for join messages in
  231. the membership protocol.
  232. The default is 100 milliseconds.
  233. .TP
  234. send_join
  235. This timeout specifies in milliseconds an upper range between 0 and send_join
  236. to wait before sending a join message. For configurations with less then
  237. 32 nodes, this parameter is not necessary. For larger rings, this parameter
  238. is necessary to ensure the NIC is not overflowed with join messages on
  239. formation of a new ring. A reasonable value for large rings (128 nodes) would
  240. be 80msec. Other timer values must also change if this value is changed. Seek
  241. advice from the corosync mailing list if trying to run larger configurations.
  242. The default is 0 milliseconds.
  243. .TP
  244. consensus
  245. This timeout specifies in milliseconds how long to wait for consensus to be
  246. achieved before starting a new round of membership configuration.
  247. The default is 200 milliseconds.
  248. .TP
  249. merge
  250. This timeout specifies in milliseconds how long to wait before checking for
  251. a partition when no multicast traffic is being sent. If multicast traffic
  252. is being sent, the merge detection happens automatically as a function of
  253. the protocol.
  254. The default is 200 milliseconds.
  255. .TP
  256. downcheck
  257. This timeout specifies in milliseconds how long to wait before checking
  258. that a network interface is back up after it has been downed.
  259. The default is 1000 millseconds.
  260. .TP
  261. fail_to_recv_const
  262. This constant specifies how many rotations of the token without receiving any
  263. of the messages when messages should be received may occur before a new
  264. configuration is formed.
  265. The default is 50 failures to receive a message.
  266. .TP
  267. seqno_unchanged_const
  268. This constant specifies how many rotations of the token without any multicast
  269. traffic should occur before the merge detection timeout is started.
  270. The default is 30 rotations.
  271. .TP
  272. heartbeat_failures_allowed
  273. [HeartBeating mechanism]
  274. Configures the optional HeartBeating mechanism for faster failure detection. Keep in
  275. mind that engaging this mechanism in lossy networks could cause faulty loss declaration
  276. as the mechanism relies on the network for heartbeating.
  277. So as a rule of thumb use this mechanism if you require improved failure in low to
  278. medium utilized networks.
  279. This constant specifies the number of heartbeat failures the system should tolerate
  280. before declaring heartbeat failure e.g 3. Also if this value is not set or is 0 then the
  281. heartbeat mechanism is not engaged in the system and token rotation is the method
  282. of failure detection
  283. The default is 0 (disabled).
  284. .TP
  285. max_network_delay
  286. [HeartBeating mechanism]
  287. This constant specifies in milliseconds the approximate delay that your network takes
  288. to transport one packet from one machine to another. This value is to be set by system
  289. engineers and please dont change if not sure as this effects the failure detection
  290. mechanism using heartbeat.
  291. The default is 50 milliseconds.
  292. .TP
  293. window_size
  294. This constant specifies the maximum number of messages that may be sent on one
  295. token rotation. If all processors perform equally well, this value could be
  296. large (300), which would introduce higher latency from origination to delivery
  297. for very large rings. To reduce latency in large rings(16+), the defaults are
  298. a safe compromise. If 1 or more slow processor(s) are present among fast
  299. processors, window_size should be no larger then 256000 / netmtu to avoid
  300. overflow of the kernel receive buffers. The user is notified of this by
  301. the display of a retransmit list in the notification logs. There is no loss
  302. of data, but performance is reduced when these errors occur.
  303. The default is 50 messages.
  304. .TP
  305. max_messages
  306. This constant specifies the maximum number of messages that may be sent by one
  307. processor on receipt of the token. The max_messages parameter is limited to
  308. 256000 / netmtu to prevent overflow of the kernel transmit buffers.
  309. The default is 17 messages.
  310. .TP
  311. rrp_problem_count_timeout
  312. This specifies the time in milliseconds to wait before decrementing the
  313. problem count by 1 for a particular ring to ensure a link is not marked
  314. faulty for transient network failures.
  315. The default is 1000 milliseconds.
  316. .TP
  317. rrp_problem_count_threshold
  318. This specifies the number of times a problem is detected with a link before
  319. setting the link faulty. Once a link is set faulty, no more data is
  320. transmitted upon it. Also, the problem counter is no longer decremented when
  321. the problem count timeout expires.
  322. A problem is detected whenever all tokens from the proceeding processor have
  323. not been received within the rrp_token_expired_timeout. The
  324. rrp_problem_count_threshold * rrp_token_expired_timeout should be atleast 50
  325. milliseconds less then the token timeout, or a complete reconfiguration
  326. may occur.
  327. The default is 20 problem counts.
  328. .TP
  329. rrp_token_expired_timeout
  330. This specifies the time in milliseconds to increment the problem counter for
  331. the redundant ring protocol after not having received a token from all rings
  332. for a particular processor.
  333. This value will automatically be calculated from the token timeout and
  334. problem_count_threshold but may be overridden. It is not recommended to
  335. override this value without guidance from the corosync community.
  336. The default is 47 milliseconds.
  337. .PP
  338. Within the
  339. .B logging
  340. directive, there are several configuration options which are all optional.
  341. .PP
  342. The following 3 options are valid only for the top level logging directive:
  343. .TP
  344. timestamp
  345. This specifies that a timestamp is placed on all log messages.
  346. The default is off.
  347. .TP
  348. fileline
  349. This specifies that file and line should be printed.
  350. The default is off.
  351. .TP
  352. function_name
  353. This specifies that the code function name should be printed.
  354. The default is off.
  355. .PP
  356. The following options are valid both for top level logging directive
  357. and they can be overriden in logger_subsys entries.
  358. .TP
  359. to_stderr
  360. .TP
  361. to_logfile
  362. .TP
  363. to_syslog
  364. These specify the destination of logging output. Any combination of
  365. these options may be specified. Valid options are
  366. .B yes
  367. and
  368. .B no.
  369. The default is syslog and stderr.
  370. .TP
  371. logfile
  372. If the
  373. .B to_logfile
  374. directive is set to
  375. .B yes
  376. , this option specifies the pathname of the log file.
  377. No default.
  378. .TP
  379. logfile_priority
  380. This specifies the logfile priority for this particular subsystem. Ignored if debug is on.
  381. Possible values are: alert, crit, debug (same as debug = on), emerg, err, info, notice, warning.
  382. The default is: info.
  383. .TP
  384. syslog_facility
  385. This specifies the syslog facility type that will be used for any messages
  386. sent to syslog. options are daemon, local0, local1, local2, local3, local4,
  387. local5, local6 & local7.
  388. The default is daemon.
  389. .TP
  390. syslog_priority
  391. This specifies the syslog level for this particular subsystem. Ignored if debug is on.
  392. Possible values are: alert, crit, debug (same as debug = on), emerg, err, info, notice, warning.
  393. The default is: info.
  394. .TP
  395. debug
  396. This specifies whether debug output is logged for this particular logger.
  397. The default is off.
  398. .TP
  399. tags
  400. This specifies which tags should be traced for this particular logger.
  401. Set debug directive to
  402. .B on
  403. in order to enable tracing using tags.
  404. Values are specified using a vertical bar as a logical OR separator:
  405. enter|leave|trace1|trace2|trace3|...
  406. The default is none.
  407. .PP
  408. Within the
  409. .B logging
  410. directive, logger_subsys directives are optional.
  411. .PP
  412. Within the
  413. .B logger_subsys
  414. sub-directive, all of the above logging configuration options are valid and
  415. can be used to override the default settings.
  416. The subsys entry, described below, is mandatory to identify the subsystem.
  417. .TP
  418. subsys
  419. This specifies the subsystem identity (name) for which logging is specified. This is the
  420. name used by a service in the log_init () call. E.g. 'CKPT'. This directive is
  421. required.
  422. .PP
  423. Within the
  424. .B aisexec
  425. directive, there are two configuration options which are all optional:
  426. .TP
  427. user
  428. .TP
  429. group
  430. These specify the user and group, which is able to run and use corosync.
  431. In any case, this is able to do root:root. But if you don't want run
  432. corosync as root, you can use this directives.
  433. The default is ais.
  434. .SH "FILES"
  435. .TP
  436. /etc/corosync.conf
  437. The corosync executive configuration file.
  438. .SH "SEE ALSO"
  439. .BR corosync_overview (8)
  440. .PP