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ABSTRACT
Totem: A Reliable Ordered Delivery Protocol

for Interconnected Local-Area Networks
by
Deborah A. Agarwal

Many recent computer applications have been designed to execute in a dis-
tributed computer system because a distributed system has the potential to
provide high availability and excellent performance at a low price. However,
due to the need to coordinate tasks and share data among processors, pro-
gramming the application is often difficult and, thus, this potential is not often
realized. A communication protocol that provides reliable totally ordered de-
livery of messages in a distributed system can greatly simplify the application
programmer’s task.

This dissertation describes a reliable delivery and total ordering protocol,
called Totem, that models a communication network as broadcast domains con-
nected by gateways. Processors within a broadcast domain communicate by
broadcasting messages. Access to the communication medium is controlled by
a token, and reliable delivery is achieved by the use of sequence numbers in
messages. Gateways forward messages between rings. Timestamps in messages
provide totally ordered message delivery that respects causality and is consistent
across the entire network.

A membership algorithm provides recovery from processor failure and net-
work partitioning, as well as loss of all copies of the token. When a failure
occurs, the membership algorithm forms a new membership and regenerates
the token so that normal operation can resume. The gateways maintain net-
work topology information that is updated when a membership change occurs.
Changes in the membership and in the topology are provided to the application

in order with respect to the other messages in the system.
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Chapter 1

Introduction

1.1 Motivation

Many recent computer applications have been designed to execute in a dis-
tributed computer system because a distributed system has the potential to
provide high availability and excellent performance at a low price. Applica-
tion tasks can be divided among the processors in the system, and data can be
replicated to protect against failures. However, due to the difficulty of coordi-
nating tasks and sharing data among processors, the potential provided by a

distributed system is not often realized.

Traditionally, distributed systems have been designed to be synchronous,
because synchronous systems allow simple consensus protocols to be used to
maintain the consistency of replicated data in the presence of faults. The Mars
system provides one example of a synchronous distributed system that has been
built [34, 35]. Unfortunately, large systems are necessarily partially or entirely
asynchronous. Existing protocols to maintain consistency in such systems are in-
efficient. A reliable ordered delivery protocol can provide efficient fault-tolerant

consensus and simplify the application programmer’s task.

Applications developed for distributed systems include process control sys-
tems, database systems, and cooperative work tools. One application is man-

ufacturing process control. Modern factories consist of automated workecells
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connected by conveyors or automated guided vehicles (AGVs). Each workeell
is capable of performing several tasks and each part visits workcells as needed
to complete the processing. The individual tasks performed by a workcell are
controlled by one or more computers in the workcell. A scheduling system de-
termines how parts should be scheduled based on the availability of workcells
and raw materials. The computers in the workcells, the conveyor or AGVs, and
the scheduler must coordinate their activities by passing messages on a commu-
nication network. The distributed sites can coordinate tasks more easily if the

communication protocol provides reliable ordered delivery of messages.

Another distributed system application, a multiparty whiteboard, allows
multiple users to hold a meeting and interact on a virtual whiteboard. The
whiteboard, available on the Internet, uses unreliable multicast packets to com-
municate between sites running the whiteboard. The unreliable multicast is
an experimental capability recently added to the Internet [15]. Coherent in-
teraction on the shared whiteboard requires reliable ordered communication of

changes to the whiteboard.

Database applications also use distributed systems to provide fault tolerance
by allowing redundant processing and replicas of the data. Replicated databases
typically employ a client/server paradigm in which multiple servers serve a
client and each of the servers holds a copy of the data. When the data are
updated, a copy of the update message must be sent to each of the servers. These
update messages must be processed in a consistent serializable order; otherwise,
inconsistencies in the data can arise. It is particularly critical that all of the
servers commit a transaction, or none do. Existing replicated databases use a
two-phase commit protocol that blocks if any server fails. A reliable ordered
multicast protocol has the potential to achieve reliable commit for fault-tolerant
distributed databases that very seldom blocks.

Although it is impossible to provide a reliable ordered delivery that is guar-
anteed to terminate in a purely asynchronous system (see [45] for one proof),
several protocols have been developed for reliable ordered delivery in a partially

asynchronous system that have asymptotic termination properties [7, 8, 13, 49].
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1.2 The Totem Protocol

The main contribution of this dissertation is a reliable delivery and total order-
ing protocol, called Totem, that models a communication network as broadcast
domains connected by gateways. Processors within a broadcast domain commu-
nicate by broadcasting messages. On each broadcast domain is superimposed a
logical token-passing ring. Access to the broadcast medium is controlled by a
token-passing protocol, and reliable delivery is achieved by the use of sequence
numbers in messages. Gateways forward messages between rings. Timestamps
in messages provide totally ordered message delivery that respects causality and

is consistent across all rings.

Reliable ordered message delivery protocols can provide different levels of
message ordering services. We categorize these levels as fifo, partial and total
ordering. The fifo level of service provides ordered delivery of messages between
any pair of processors but does not place any restrictions on the interleaving of
the messages from two different sites at a destination. The partial order service
is usually based on the causal order defined by Lamport [36] which ensures that
if a message m can have causally affected another message m/, then it is ordered
before that message. The total order is a partial order in which every message

is ordered with respect to every other message.

In the past, the protocol efficiency decreased going from delivering messages
in partial order to delivering messages in total order. This was a result of
the perceived need to construct the total order from the partial order. The
objective of the Totem protocol is to deliver totally ordered messages efficiently,

thus making partial ordering unnecessary.

In Totem, messages are broadcast with enough information to establish their
position in the total order immediately, and token transfer is not delayed except
as needed for flow control. This eliminates the need for acknowledgments of
individual messages by each of the processors. The Totem protocol provides
virtual synchrony [13] and introduces extended virtual synchrony [44]. Extended
virtual synchrony extends the concept of virtual synchrony to systems in which
the components of a partitioned system must continue to operate and may

subsequently remerge, and also to systems in which failed processors can be



4 CHAPTER 1. INTRODUCTION

Application

Process Group Protocol

Multiple-Ring Protocol

Single-Ring Protocol

Local-Area Network

Figure 1.1: The Totem system hierarchy.

repaired and can rejoin the system with stable storage intact. In extended
virtual synchrony, two processors may deliver different sets of messages, when
one of them has failed or when they are members of different components, but
they must deliver messages consistently.

The Totem system is composed of a hierarchy of protocols at each processor
and provides reliable ordered delivery of messages network wide (see Figure 1.1).
The bottom layer is the local-area network itself which provides message pass-
ing between processors. The single-ring protocol provides reliable delivery and
ordering of messages within the broadcast domain. The multiple-ring protocol
provides reliable delivery and ordering across the entire network. The process

group interface to the application is described in [37].

1.3 The Single-Ring Protocol

The single-ring protocol uses a logical token ring to provide reliable ordered
delivery of messages to processors in a broadcast domain. The token circulates
around the ring as a point-to-point message, and a processor must be in pos-
session of the token to broadcast a message to the processors on the ring. Each
message header contains a sequence number derived from a sequence number
field in the token. The sequence number field is incremented as each message

is broadcast, and the token passes from processor to processor as it circulates



1.3. THE SINGLE-RING PROTOCOL 3

around the ring, thereby providing a single sequence of monotonically increasing

sequence numbers for the messages broadcast on the ring.

Processors recognize missed messages by detecting gaps in the sequence num-
bers. When a processor receives the token, it requests retransmissions by insert-
ing the sequence numbers of missing messages into the token’s retransmission
request field. On receiving the token, a processor that possesses a requested
message retransmits the message and removes the request from the retransmis-
sion request field in the token. In this way, the single-ring protocol provides the

local mechanism for reliable ordered delivery of messages.

On the local ring, a message can be totally ordered as soon as it and all prior
messages, as defined by the sequence numbers, have been received. A message

can be discarded when it has been received by all processors on the ring.

To provide fault-tolerance, the single-ring protocol is integrated with a mem-
bership algorithm that provides recovery from token loss, from processor failure
and restart, and from ring partitioning and remerging. A time-out determines
token loss, processor failure, and ring partitioning when the token is passed to a
failed or disconnected processor, resulting in loss of the token. New or restarted
processors and partitioned rings that have recently regained access to the local-
area network are detected by the appearance of messages on the communication

medium from processors that are not members of the current ring.

The membership algorithm is activated by a token loss timeout or receipt of
a message from a processor that is not a member of the current membership.
The membership algorithm contains four states. The first state is the Gather
state in which the processors attempt to obtain agreement on the membership
of the new token ring. If they agree on the membership, they proceed to the
Commit state where they establish the ring identifier and rotation pattern for
the new token. After the new token has begun circulating, in the Recover
state the processors deliver old messages from the previous ring(s) to ensure
extended virtual synchrony and then proceed to the normal Operational state.
The membership algorithm is a significantly modified version of the algorithm

developed for Transis [6].

A new or restarting processor starts in the Gather state. Other processors

on the same local-area network also proceed to the Gather state and the mem-
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bership algorithm normally merges the new processor and the existing ring into
a single new ring. In the base case, the processor forms a ring containing only
itself.

Each single-ring membership change is delineated by two Configuration
Change messages which are ordered with respect to the messages on the ring.
The first Configuration Change message lists the processors that are in the in-
tersection of the old and new membership. Residual messages from the old
configuration that cannot be delivered in the old configuration are delivered
within this configuration. The second Configuration Change message marks
the beginning of the new configuration formed by the membership algorithm

and lists the membership of the new configuration.

1.4 The Multiple-Ring Protocol

The multiple-ring protocol is executed by each processor and gateway. A gate-
way interconnects two broadcast domains, and is responsible for forwarding
messages between rings, maintaining network topology information, and dis-
seminating local-area failure and join information. Messages are timestamped
on generation using Lamport clocks [36] to preserve causality.

As the single-ring protocol delivers messages in total order to a gateway, the
gateway forwards the messages in order onto the other ring. When forwarded,
a message is given a new sequence number appropriate to the new ring but
retains its original timestamp. The single-ring protocol and forwarding mecha-
nisms combine to ensure that messages originating on any one ring are forwarded
throughout the network in order. When a membership change occurs on a ring,
the resulting Configuration Change messages are forwarded as regular messages.
When a processor receives a Configuration Change message, it begins ordering
messages received from the new ring. The messages that were originated be-
fore the membership change precede the Configuration Change message, and
the messages originating after the membership change follow the Configuration
Change message.

Since messages are forwarded through the network in order, a processor can

determine which messages have been forwarded by observing the messages on
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its own ring. A processor is guaranteed to have received all messages preceding
a message generated on the message’s source ring. By keeping track of a times-
tamp for each ring in the network, a processor can determine a network-wide
total order.

Each gateway maintains a view of the network topology. When a Configu-
ration Change message is received, a gateway notes the change in its topology
information. When a Configuration Change message for a locally attached ring
is the message with the lowest timestamp, each gateway on the ring sends a
Network Topology message indicating its current topology information. The
Network Topology messages are necessary to ensure that all of the gateways on
the new ring start with the same view of the topology of the network. A Topol-
ogy Change message is sent by a gateway after receipt of Network Topology
messages or when a gateway determines that a ring has become disconnected
from the topology. Topology Change messages forwarded through the network
are used by processors and gateways to learn of the changes in the network

topology due to a configuration change.

1.5 Related Issues

Although the Totem protocol is designed to continue despite network parti-
tions, reliable delivery of messages can be provided only between processors
in the same partition. Thus, it is desirable to design the network to increase
the probability that the network will remain connected despite failures. If we
represent the network as a graph where each local-area network is a node and
each gateway is an edge, then network connectivity can be analyzed as a graph
partitioning problem.

We have investigated graphs of networks that were constructed by adding
random edges to the graph and robust graphs that were constructed to be
resilient to edge deletion [41]. The data indicate that, as gateways fail, parti-
tioning of the network is of more concern than the increased length of the routes
in the network.

To provide efficient broadcast communication, effective flow control is re-

quired. Broadcast communication can proceed only at the rate of the slowest
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processor or communication link. If messages are broadcast at a higher rate
for an extended period of time, the slowest participant will experience buffer
overflow and begin to drop messages. This results in higher retransmission rates
and lower throughput.

The single-ring protocol contains a simple token-based flow-control mecha-
nism which provides good performance. Throughput is higher than achieved
by other algorithms and comparable to that achieved by TCP/IP for point-
to-point communication. The multiple-ring protocol introduces back-pressure
mechanisms across the network to alleviate congestion. Any processor or gate-
way that is running out of buffer space attempts to block generation of new
messages throughout the network for long enough to free buffer space.

The Totem single-ring and multiple-ring protocols have been implemented.
The effects of the network layout on fault-tolerance have also been studied
through simulations.

The remainder of this dissertation is organized as follows. The related work
is presented and discussed in Chapter 2. The environment in which Totem
operates and the services provided by Totem are described in Chapter 3. A
detailed description of the single-ring protocol can be found in Chapter 4. The
multiple-ring protocol and the issues related to interconnecting broadcast do-
mains are covered in Chapter 5. Conclusions and recommendations are given
in Chapter 6. Finally, Appendix A contains a guide to compiling and using the

Totem implementation and simulation.



Chapter 2

Background

The Totem protocol is designed to provide message passing support for dis-
tributed applications. One of the target applications, distributed databases, is
primarily concerned with consistent updates of replicated data and consistent
operation during partitioning of the system. Replica control protocols orches-
trate the reading and writing of copies of a data item in a distributed database.

The task of designing a replica control protocol is particularly difficult if the
system might partition leaving some of the copies inaccessible. Several replica
control protocols have been developed to support distributed databases on net-
works that might partition [24, 26, 48]. All of these protocols would benefit
from having reliable message delivery, and some of these protocols assume that
reliable ordered message delivery is already provided by a communication layer.
Some replica control protocols also assume that process failure and partition
detection are provided by underlying failure detectors [48, 53].

Algorithms have been developed for maintenance of replicated data in a
distributed database, such as [2, 3, 4], that implement mechanisms for causal
ordering of messages. If the message order provided by the reliable ordered
delivery protocol incorporates causality constraints, these database algorithms
can be built using relatively simple application level mechanisms.

Not all distributed application designers accept that totally ordered delivery
of messages to a database will simplify the task of maintaining consistency
[18]. Some application designers would argue that reliable ordered delivery

protocols are inappropriate because, external and semantic causality constraints
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are not represented in the message order, the database transaction model is not
directly implemented, and the protocols are inefficient. This view is relatively
narrow since reliable ordered delivery does not preclude the inclusion of external
and semantic ordering constraints in the messages; it does, however, eliminate
the need to include causality constraints between messages. Although reliable
ordered delivery does not directly implement the database transaction model,
it has been used successfully to support this model and many recent reliable
ordered delivery protocols provide high throughput and low latency of message
delivery [11].

The need for an underlying protocol to provide failure detection to the
database is apparent; the current database solutions to replica control tend
to be complicated and are not often implemented. Reliable ordered delivery
protocols that can operate despite network partitions should ease the task of
designing and implementing replica control protocols. Since the Totem proto-
col provides notification of membership changes in order with respect to the
messages in the system, the application can focus on other issues [55].

Totem is not the first protocol to be developed in support of distributed ap-
plications. Several other protocols provide fault-tolerance and reliable ordered
delivery of messages. Many of these protocols have been developed to oper-
ate in a synchronous system [22, 34, 35]. Synchronous protocols assume that
the maximum processing and communication times can be predicted. Such con-
straints on processing and communication times are needed by real-time systems
with very short deadlines. However, timing constraints can be unnecessarily re-
strictive and unrealistic. Operating systems such as Unix have unpredictable
response times, and communication involves buffering of messages which can
cause unpredictable delays.

Reliable ordered delivery protocols require consensus decisions for message
ordering and membership decisions; unfortunately, the impossibility of reach-
ing consensus in an asynchronous distributed system has been shown in [28].
Additional proofs are given in [27, 39] and results indicating what is achiev-
able appear in [9]. Necessary and sufficient conditions for broadcast consensus

protocols are given in [46].
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Some protocols for reaching consensus in asynchronous systems are asymp-
totic in the sense that the probability of reaching consensus asymptotically ap-
proaches one as time increases. An example of an asymptotic atomic broadcast
protocol can be found in [38].

Much of the difficulty in reaching consensus in an asynchronous system is
caused by the difficulty of distinguishing between a failed processor and a slow
processor. Many protocols use timeouts to detect failure; these failure detec-
tors are termed “unreliable” because they may sometimes eliminate working
processors. Chandra and Toueg investigate the properties of unreliable failure
detectors in [16].

Despite the difficulty of designing communication protocols for asynchronous
environments, the benefits of not assuming an upper bound on communication
and processing time generally outweigh the disadvantages. The following pro-

tocols were all designed to operate in asynchronous environments.

2.1 TCP

The most widely used protocol for reliable ordered delivery today is the Internet
TCP protocol. The TCP protocol provides reliable ordered delivery of packets
between a pair of processors; it does not order messages arriving from different
sites. A sliding window mechanism provides flow control and packet ordering
and recovery. Each packet is acknowledged by the sender upon receipt allowing
additional packets to be sent. Sequence numbers on the packets allow ordering
and recognition of lost packets. A group multicast to N processes using TCP
requires 2N packets: N transmissions of the packet (one for each destination)
and N acknowledgments. Although multicast services are now available on the
Internet, these services provide only unreliable delivery and do not provide for

ordering of packets consistently across an entire multicast group.

2.2 Chang and Maxemchuk

The Chang and Maxemchuk protocol [17] provides a total order on messages by

using a token-passing protocol. This protocol does not use the token to restrict
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access to the medium. Instead, all processors can broadcast messages at any
time, and the processor in possession of the token broadcasts acknowledgments
that determine the total order of messages. The token site delays acknowledg-
ment of new messages until it has received all messages already acknowledged by
the previous token holders. In a network subject to k or fewer failures, messages
can be discarded after the token has visited k+1 sites. The acknowledgments
in this protocol are additional broadcast messages that increase the message
traffic on the network.

The Chang and Maxemchuk protocol does not provide flow control because
the broadcasting of new messages is not restricted. It does provide a membership
mechanism to recover from token loss, but the membership algorithm is not
resilient to further failures during reconfiguration. The protocol will normally
broadcast two messages for each message ordered in a lossless system if the token
is transferred with each acknowledgment. This overhead can be reduced in high-
load situations by grouping several acknowledgments into a single message or

by passing the token via the acknowledgment.

2.3 Isis

The Isis distributed programming system [12, 13] has been used in a wide variety
of applications to provide partial and total ordering on messages within groups
of processes. Four types of broadcast messages are allowed: GBCAST (group
broadcast), ABCAST (atomic total order broadcast), CBCAST (causal partial
order broadcast), and BCAST (unordered broadcast).

Isis has been upgraded recently with new protocols to enhance its perfor-
mance. The current version of Isis includes timestamp vectors in messages
multicast within a group to preserve causality relationships. Each processor
maintains a timestamp vector which has an entry for each member of the group.
The entries indicate which messages have been delivered and sent by this proces-
sor. When sending a message, a processor increments the value in its position of
the timestamp vector and then appends the timestamp vector to the outgoing
message. These timestamp vectors are then used to determine causal ordering

of messages within a group. Causality between groups is maintained by passing
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current versions of timestamp vectors of other groups as needed. This mecha-
nism does not, however, ensure proper ordering of messages connected by causal
chains through series of process groups [13].

The total order on messages within a group is determined using a protocol
similar to that of Chang and Maxemchuk. A token is circulated around the
group, and the current holder of the token imposes an order on concurrent
messages in the partial order for the group. The token holder then sends a
message indicating the results of its ordering decision to the other processors.
ABCAST messages sent to multiple process groups are not guaranteed to be
ordered the same since the total ordering is only within a process group.

The Isis protocol also provides in the ABCAST and CBCAST broadcast
functions the ability for the sender to request a “stability” for the message. A
processor delays delivery of a message until the requested number of processors
have acknowledged receipt of the message. If a processor is unable to achieve
the requested level of stability due to a membership change, the message is
delivered and mechanisms to determine the known stability are provided.

Group membership changes are implemented using GBCAST which provides
a system-wide total order; the ABCAST mechanism only provides message or-
dering within a group. A GBCAST message causes a temporary halt to message
ordering and a flush of all pending messages to ensure system-wide ordering con-
sistency for the message. Each new group membership is referred to as a view,
and the current view is appended to the timestamp vector in each message.

In the interest of higher performance, the Isis protocols were designed for a
network in which partitioning and rejoining of a processor with stable storage
after failure are not allowed. These restrictions in the model are required for
Isis to maintain consistency, because the ABCAST ordering mechanism allows
a partitioned or failed processor to order and deliver messages in a different
order than processors in the rest of the system. Such ordering inconsistencies
can lead to alternate decisions and can become a problem if the components
of the partition later remerge. A processor that rejoins the membership after
having been removed is considered a new processor and is forced to obtain state

information from the other processors. The Isis membership mechanisms are

described in [51].
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The Isis system includes a comprehensive suite of message ordering and pro-
cess group membership services. A key concept introduced in the Isis protocol
is virtual synchrony. Virtual synchrony ensures that, if two processors are mem-
bers of the same two consecutive configurations, then they will deliver the same
set of messages in the first configuration. This level of consistency, although
adequate in a network without partitioning and remerging, must be extended
and further restrictions applied when partitioning is considered. This topic is

discussed further in Chapter 3 of this dissertation.

2.4 Trans and Total

The Trans and Total protocols [40, 42, 45, 47] provide partial and total or-
ders on messages broadcast on a local-area network. The Trans protocol uses
positive and negative acknowledgments piggybacked on messages to create the
partial order. A processor uses transitivity of acknowledgments to reduce the
number of acknowledgments in a message; the processor places, in its next mes-
sage, positive acknowledgments for messages it has received if the processor
has not already received an acknowledgment for the message from another pro-
cessor. The processor includes negative acknowledgments for messages that it
has failed to receive. The partial order of the messages is computed from the
acknowledgments requiring a graph processing operation.

The Total protocol converts the partial order created by the Trans protocol
into a total order and involves no further exchange of messages. The Total
protocol is rare in that it is fault tolerant and can continue to order messages
without detecting failures; most other protocols block on processor failure. Be-
cause the Total protocol is fault tolerant, its membership protocol can be built
on top of the ordering algorithm. Failure of a processor is determined by the pro-
cessor’s failure to broadcast or failure to receive as determined by the messages
in the total order; the removal of the processor requires no additional messages.

Several alternative algorithms are provided for addition of processors.
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2.5 Transis

Reliable ordered delivery of messages and membership are provided in Transis by
the Lansis and Toto [6, 7, 25] protocols. The Lansis protocol is used to provide
delivery of messages in a partial order and is derived from the Trans protocol.
The primary difference between Lansis and Trans is in the acknowledgments.
A processor executing the Lansis protocol waits to acknowledge messages until
they can be delivered in causal order. The advantage of waiting to acknowledge
a message is that the causal order is directly defined by the acknowledgments.

A processor executing the Toto protocol computes the total order of the
messages using the underlying causal order generated within Lansis with ex-
change of additional messages for majority voting on the message order. Since
Toto is not fault-tolerant, failure detection and reconfiguration are provided by
mechanisms within the Lansis protocol. Failure detection is by timeout, and
reconfiguration requires several rounds of message passing to reach consensus
on the new membership. Messages can be broadcast during reconfiguration and
the causal order can be constructed, but the Toto total ordering protocol is

stopped.

2.6 Psync

The Psync protocol [49] provides a partial order on messages broadcast between
processes participating in a group. Each processor maintains a context graph
that determines the partial order. When a message is broadcast, its header
contains information defining the messages that it follows in the context graph.
The context graph information contained in the message headers is similar to
the acknowledgments used in Lansis. A processor executing Psync sends re-
transmission requests as separate messages. Gaps in the partial order due to
failures are handled by discarding messages that follow a missing message in
the context graph.

The Psync protocol has been implemented as part of the x-kernel operating
system [29, 30]. The responsibility for providing a total order and for consistency
between groups is left to the application program. Several services such as

membership have been added to the Psync protocol [43].
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2.7 TPM

The token-passing multicast protocol (TPM) uses a token to provide reliable
ordered multicast communication within process groups [50]. A processor can
only broadcast a message if it is in possession of the token. Each message is given
a sequence number derived from the token. TPM proceeds by first circulating
the token to send a set of messages. The token is then used to determine which
messages of the set processors are missing. Missed messages are retransmitted
until the set of messages can be delivered. During this time, processors are
allowed to start sending a new set of messages which will be considered for

delivery after the current set.

TPM provides a mechanism for recovery from failures. If the network par-
titons, the component with the majority of the members of the group is the
only component that is allowed to operate. Token regeneration is carried out
by iteratively trying to pass the token to the members of the old token list until
a processor accepts the token. Token regeneration is successful only if the new

token list has a majority of the group members.

2.8 The Amoeba System

In Amoeba [32], messages are sent point-to-point to a central coordinator that
assigns the message a sequence number and then broadcasts the message. A pro-
cess acknowledges receipt of messages by placing the highest message sequence
number received without gaps in its next message. The processes are organized
into groups and messages are broadcast within a group. Each group has its
own independent central site. The Amoeba system does not order messages for

different groups with respect to each other.

In the Amoeba approach, each reliable broadcast requires a minumum of one
point-to-point message and one broadcast message for each broadcast message.
It has potential to reduce the storage requirements across the system as a whole
since the central coordinator is the only site responsible for keeping copies of

messages until the broadcast becomes stable.
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2.9 Summary

Although many reliable ordered delivery protocols have been developed, many
of these protocols have high overhead. In TCP each point-to-point conversa-
tion has its own sliding window and acknowledgments. All of the causal order
protocols have to maintain the partial order information. These overheads,
although reasonable in a local-area network, become a dominant factor when
several local-area networks are participating in the protocol.

A problem that has been identified by the database community for dis-
tributed applications is partitioning. The only prior system that has begun to
address the problem of partitioning and remerging of the network is the Transis
system. The other protocols either assume that partitioning does not occur or
only allow a primary component to continue and do not allow remerging unless
the processors rejoin without stable storage intact.

Message throughput of a reliable delivery protocol is seriously degraded as re-
transmissions increase; retransmissions require bandwidth and processing time.
Despite this, many protocols allow unrestricted access to the communication
medium, and use external flow control mechanisms. These external mecha-
nisms depend on heuristics to determine the current traffic load and are often
inaccurate, leading to input buffer overflow, message loss and throughput degra-
dation.

The Totem system has been designed specifically to address the above men-

tioned problems.
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Chapter 3

The Model and Services

3.1 Environment

We model a network as a finite number of broadcast domains that are inter-
connected by gateways. A broadcast domain consists of a finite number of
processors that communicate by broadcasting messages; each processor has a

unique identifier. The broadcast domain has the following characteristics.

A broadcast message is received immediately (without excessive delay) or
not at all by each processor or gateway in the broadcast domain, i.e. it may be
received by only a subset of the processors or gateways. A processor or gateway
receives all of its own broadcast messages. Messages can be rebroadcast to

achieve reliable delivery.

Imposed on the broadcast domain is a logical token-passing ring. FEach ring
has a representative, chosen deterministically from the membership when the
ring is formed, that initiates the token for the ring, and an identifier that consists
of a ring sequence number and the identifier of the representative. To ensure
that ring sequence numbers and hence ring identifiers are unique, each processor

stores its ring sequence number in stable storage.

The gateways interconnecting the broadcast domains forward messages be-
tween rings and perform topology maintenance functions across the entire net-
work. Other than these functions, a gateway behaves exactly the same as a

processor. Each processor or gateway has stable storage, and communication
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is bi-directional. Messages are timestamped when they are first broadcast and
messages are ordered by timestamp to ensure consistent ordering across the en-
tire network. To ensure that timestamps on messages generated by a processor
after the processor failed are larger than the timestamp on any message previ-
ously generated by the processor, the current timestamp is stored periodically

in stable storage.

We use the term configuration to define a particular membership or network
topology view provided to the application. The membership of a single-ring pro-
tocol configuration is a set of processor identifiers. In the single-ring protocol,
a minimum configuration consists of the processor itself. A regular configu-
ration has the same membership and identifier as its corresponding ring. The
transttional configuration consists of processors that are transitioning from the
same old ring to the new ring. A transitional configuration also has an identifier

that consist of a “ring” sequence number and the identifier of a representative.

The network topology of the multiple-ring protocol consists of a set of single-
ring configuration identifiers. The minimum configuration in the multiple-ring

protocol consists of a single ring identifier.

We distinguish between receipt and delivery of a message. A message is
recerved from the next lower layer in the protocol hierarchy and a message is
delivered to the next higher layer. Delivery may be delayed to achieve ordering
properties requested by a message. We use the term originate to refer to the

generation of a message by the application when it is broadcast the first time.

Two types of messages are delivered to the application. Regular mes-
sages are originated by the application for delivery to the application. A
con figuration change message contains notification of a membership change
reported by the single-ring membership algorithm or a topology change reported
by the multiple-ring membership algorithm. The configuration change message

terminates one configuration and initiates another.

We assume that the network, processors and gateways are asynchronous
and provide unreliable failure detectors using timeouts [16]. We implement flow
control within the protocol so that messages are not dropped within a processor

or gateway.
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3.2 Fault Model

Processors can incur fail stop [52], timing, or omission faults [23]. A processor
that is excessively slow, or that fails to receive a message an excessive number
of times, can be regarded as having failed. A processor’s identifier does not
change when the processor fails and restarts. A repaired processor may have
retained all or part of its data in stable storage. There are no malicious faults.

The network may become partitioned so that processors in one component of
the partitioned network are unable to communicate with processors in another
component. Communication among separated components can subsequently be
reestablished. Messages can be dropped by the communication medium, and
corrupted messages are detected.

No distinction is made in the single-ring protocol between loss of all copies
of the token and processor failure or network partitioning because a failed or
disconnected processor cannot forward the token to the next processor on the
ring. Thus, the consequence of processor failure or network partitioning is loss of
all copies of the token. Loss of all copies of the token results in invocation of the

single-ring membership algorithm and formation of a new token-passing ring.

3.3 Consensus
We define consensus with respect to a particular configuration C' as follows:

o If processor p reaches a decision value = in configuration €, then every

processor in (' reaches decision value x or fails.

o If processor p reaches a decision value = in configuration C', then p does

not reach a different decision value y.
e The decision value reached by p is not pre-determined.

The main difference between this definition of consensus and the traditional
definition is that traditional consensus is not tied to a particular configuration

but instead applies across the entire system over all time [28].
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3.4 Membership Services

The following services are provided by the single-ring membership algorithm

and by the multiple-ring membership algorithm.

e Delivery of Configuration Change Messages. Each configuration
change is signalled by delivery of a Configuration Change message by the
membership algorithm. The Configuration Change message contains the

configuration identifier and the membership of the new configuration.

e Uniqueness of Configurations. Each configuration identifier is unique;
moreover, at any time a processor is a member of at most one configura-

tion.

e Termination. If a configuration ceases to exist for any reason, such
as processor failure or network partitioning, then every processor of that

configuration either installs a new configuration, or fails before doing so.

e Configuration Change Consistency. Processors that are members
of the same configuration C; deliver the same Initiate Configuration C}
message to begin the configuration. Furthermore, if two processors install
a configuration Cy directly after C'y, then the processors deliver the same

Configuration Change message to terminate C'y and initiate C}.

Within the multiple-ring membership algorithm a configuration is a topol-
ogy and the Configuration Change message is replaced by the Topology Change
message. The Initiate Configuration 5 message and the Terminate Configu-
ration ('; message are replaced by the Initiate Topology (5 message and the

Terminate Topology €} message, respectively.

3.5 Reliable Ordered Delivery Services

The service of reliable totally ordered message delivery is provided by both the
single-ring protocol for messages in the broadcast domain and the multiple-ring

protocol for messages network-wide.



3.5. RELIABLE ORDERED DELIVERY SERVICES 23

We define a causal order that is similar to Lamport’s definition [36], but
we define the causal order in terms of messages rather than events and with
respect to a particular configuration rather than across all configurations. This
allows rejoining of failed processors and remerging of partitioned networks with-
out requiring all messages from all components of a partition to be delivered.
For this definition, we split the Configuration Change message into a Termi-
nate Configuration ('; message and an Initiate Configuration C; message. The
Initiate Configuration Cy message that starts configuration Cy lists the mem-
bership of configuration €5 and is the same for every processor p in C5. A
processor that transitions directly from configuration € to configuration Cy
delivers a Terminate Configuration 'y message and an Initiate Configuration
('y message together as a Configuration Change message. A processor always
delivers a Terminate Configuration message and an Initiate Configuration mes-
sage together; one is never delivered without the other. There is, however, no
implied causal relationship between the Initiate Configuration message and the

Terminate Configuration message for different configurations.

Causal Order for a Configuration
For a given configuration C' and for all processors p that are members of
C', the causal order for C is the reflexive transitive closure of the “precedes”

relation defined as follows:

e The Initiate Configuration C' message delivered by p precedes every mes-

sage originated by p in C.

o For each message m; delivered by p in €' and each message my originated
in C' by p, if my is delivered by p before message ms is originated, then

my precedes ms.

e For each message my originated in C' by p and each message my originated

in C' by p, if my is originated by p before msy, then my precedes ms.

e Each message delivered in C' by p precedes the Terminate Configuration

message delivered by p to terminate C.
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This definition of causal order allows processors to deliver messages after the
network partitions by limiting the causal relationships to the configuration in
which the message is originated. This allows processors in different components
of the partitioned network to remerge and deliver messages without having
to deliver the messages delivered in the other component. Past systems have
defined the causal order to be across all messages and all configurations [13].

The processors in a configuration do not necessarily deliver the same last
few messages in a configuration. Partitioning of the network can result in dif-
ferent sets of messages being delivered in different components of the network
and therefore in different configurations. Each message is delivered according
to its timestamp so that the relative order of any two messages can be estab-
lished deterministically by processors that deliver both messages. We define the
message delivery order within a configuration and across the entire network in

the following manner:

Delivery Order for Configuration C
The reflexive transitive closure of the “precedes” relation defined on the union

of the sets of regular messages delivered in C' by all processors p in (', as follows:

o Message my precedes message my if processor p delivers my in C' before p

delivers my in C.

We prove in Sections 4.5 and 5.5 that the Delivery Order for Configuration '
is a total order. Note that some processors in configuration ' may not deliver

all messages of the Delivery Order for Configuration C.

Global Delivery Order
The reflexive transitive closure of the union of the Delivery Orders for all Con-
figurations and of the “precedes” relation defined on the set of Configuration

Change messages and regular messages as follows:

o Message my precedes message mso if a processor p delivers my before p

delivers ms.

We prove in Sections 4.5 and 5.5 that the Global Delivery Order is a total

order. In the past, the protocol efficiency decreased as the level of ordering
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increased. This was a result of the perceived need to construct the total order
from the causal order. The objective of the Totem protocol is to deliver to-
tally ordered messages efficiently and with less overhead than can be achieved
by other protocols for partial ordering on a local-area network. The message
ordering services provided by the Totem single-ring and multiple-ring protocols,

defined below, are for all configurations ' and all processors p € C.

¢ Reliable Delivery for Configuration C

— Each regular message m has a unique message identifier.
— It a processor p delivers message m, then p delivers m only once.
— A processor p delivers its own messages unless it fails.

— If processor p delivers two different messages, then p does not deliver

them simultaneously.

— A processor p delivers all of the messages originated in its current

configuration €' unless a configuration change occurs.

— If processors p and ¢ are both members of consecutive configurations
Cy and Cy, then p and ¢ deliver the same set of messages in C; before
delivering the Configuration Change message that terminates C'y and

initiates C,.
e Delivery in Causal Order for Configuration

— Reliable delivery for Configuration C'.

— It processor p delivers both messages my and my, and my precedes
mo in the Lamport causal order, then p delivers m before p delivers

mso.
e Delivery in Agreed Order for Configuration C

— Delivery in causal order for Configuration C.

— If processor p delivers message msy in configuration €' and my is any
message that precedes ms in the Delivery Order for Configuration C',

then p delivers my in C before p delivers ms.
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e Delivery in Safe Order for Configuration C

— Delivery in agreed order for Configuration C.

— If processor p delivers message m in configuration €' and the origi-
nator of m requested safe delivery, then p has determined that each

processor in (' has received m and will deliver m or will fail.
¢ Extended Virtual Synchrony

— Delivery in agreed or safe order as requested by the originator of the

message.

— If processor p delivers messages my and mq, and my precedes my in

the Global Delivery Order, then p delivers my before p delivers ms.

Reliable delivery defines which messages a processor must deliver and basic
consistency constraints on that delivery. Agreed order goes further by defining
delivery in total order. When a processor delivers a message in agreed order in
a configuration, the processor has delivered all preceding messages in the total
order and the processors in the configuration have reached consensus regarding
the delivery order of this message.

When a processor delivers a message in safe order in a configuration, the
processors in the configuration have reached consensus regarding the delivery
order of the message. Consensus is reached through acknowledgments from
the other processors in the configuration that have received the message and
all preceding messages. The algorithm is designed to guarantee that once a
processor has acknowledged a message and its predecessors, the processor will
deliver the message unless the processor fails. There is no requirement defining
the configuration in which the processor delivers the message.

Extended virtual synchrony ensures that messages are delivered in a con-
sistent order system-wide, even if processors fail and restart or the network
partitions and remerges. In contrast, virtual synchrony only constrains deliv-
ery of messages in a single component of the network, even if processors in
other components have received the messages. Protocols that use virtual syn-
chrony as their consistency constraint are forced to ensure that at most one

component continues to operate after partitioning occurs. Virtual synchrony
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allows the components that are halted to deliver messages inconsistently be-
fore halting. Extended virtual synchrony has been defined to provide consistent
message delivery despite partitioning and remerging. The Totem protocol uses
a Configuration Change message or a Topology Change message to notify the
application of the membership of the configuration or topology within which
delivery is guaranteed before delivering a message as safe.

Some distributed applications require that, if a partition occurs, at most
one of the resulting components is allowed to continue to deliver messages. The
component allowed to continue is referred to as the primary component. We
show in [44] that a primary partition system can be built on top of a protocol

that provides extended virtual synchrony.
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Chapter 4

The Single-Ring Protocol

The single-ring protocol provides membership and agreed and safe delivery of
messages within a broadcast domain. The membership algorithm gathers the
processors into a ring and begins circulation of the token. A processor must
be in possession of the token to broadcast a message. Each message header
contains a sequence number derived from a field in the token; there is a single
sequence of monotonically increasing sequence numbers for the ring. Delivery
in sequence number order is agreed delivery. Safe delivery uses an additional
field in the token to determine when all processors on the ring have received a

message.

4.1 The Total Ordering Algorithm

First we describe the algorithm with the assumptions that the token is never
lost, that processor failures do not occur, and that the ring does not become
partitioned; however, messages may be lost. In Section 4.2 we describe the
membership algorithm which handles token loss, processor failure and restart,

and partitioning and remerging of the ring.

The Data Structures

Regular Message

Each regular message contains the following fields:



30

CHAPTER 4. THE SINGLE-RING PROTOCOL

sender_id: The identifier of the processor originating the message.

ring_id: The identifier of the ring on which the message was originated,

consisting of the representative’s identifier and a ring sequence number.

seq: A message sequence number.

conf-id: 0.

o contents: The contents of the message.

The ring_id, seq and conf_id fields constitute the identifier of the message.

Regular Token

To broadcast a message on the ring, a processor must hold the token. The token

contains the following fields:

o type: Regular.

ring_id: The identifier of the ring on which the token is circulating, con-

sisting of the representative’s identifier and a ring sequence number.

token_seq: A sequence number which allows recognition of redundant

copies of the token.

seq: The largest sequence number of any message that has been broadcast

on the ring, i.e. a high-water mark.

aru: A sequence number (all-received-up-to) used to determine which mes-
sages processors on the ring have received, i.e. a low-water mark. The aru
controls the discarding of messages that have been received by all proces-

sors on the ring.

aru_id: The identifier of the processor that set the aru to a value less than
the seq. The aru_id is used to choose a processor to blame for failure to

receive.

rtr: A retransmission request list, containing one or more retransmission

requests.
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Local Variables

Each processor maintains the following local variables:

o my_aru: The sequence number of a message such that the processor has
received all messages with sequence numbers less than or equal to this

sequence number.

o my_token_seq: The value of the token_seq when the processor forwarded
the token last.

o my_high_delivered: The sequence number in the most recently delivered

message.

The my_aru and my_token_seq are initialized to zero by the processor in the
membership algorithm during the formation of the ring. My_aru is updated by
the processor as it receives messages. My_token_seq is updated by the processor
as it receives tokens. My_high_delivered is initialized to zero on installation of a

new token ring and is updated by the processor as it delivers messages.

The Algorithm

On reception of the token, a processor completes processing of all the messages
in its input buffer, so that the processor has an empty input buffer at the start
of the next token rotation. After emptying the messages from its input buffer,
the processor broadcasts requested retransmissions and new messages, updates
the token, and transmits the token to the next processor on the ring. For each
new message that it broadcasts, a processor increments the seq field of the token
and sets the sequence number of the message to the value in the seq field.
Each time a processor receives the token, the processor compares the aru
field of the token with my_aru and, if my_aru is smaller, replaces aru with
my_aru and sets aru_id to its identifier. If the processor receives the token and
the aru_id field of the token equals its identifier, it then sets aru to my_aru. If
seq and aru are equal, it increments aru and my_aru in step with seq and sets

the aru_id field to negative one (an invalid processor identifier).
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If the seq field of the token is higher than my_aru, there are messages that
this processor has not received so the processor sets or augments the rtr field.
If the processor has received messages that appear in the rtr field then, for each
such message, it retransmits that message before broadcasting new messages.
When it retransmits a message, the processor removes the sequence number of
that message from the rtr field. The pseudocode executed by a processor on

receipt of a token is shown in Figure 4.1.

It a processor has received message m and has received and delivered every
message with sequence number less than that of m and if the originator of m
requested agreed delivery, then the processor delivers m in agreed order. If,
in addition, the processor has forwarded the token with an aru greater than
or equal to the sequence number of m on two successive rotations and if the
originator of m requested safe delivery, then m can be delivered by the processor
in safe order. When a message becomes safe, it no longer needs to be retained
for future retransmission. The pseudocode executed by a processor on receipt

of a regular message is given in Figure 4.2.

The total ordering algorithm is unable to continue when the token is lost;
token retransmission has been added to reduce the probability that the token is
lost. Each time a processor forwards the token, it sets a Token Retransmission
timeout. A processor cancels the Token Retransmission timeout if it receives
a regular message or the token. Receipt of a regular message indicates that
the token is not lost. On a Token Retransmission timeout, the processor re-
transmits the token to the next processor on the ring and then resets the Token

Retransmission timeout.

The token_seq field provides recognition of redundant tokens. A processor
accepts the token only if the token_seq field of the token is greater than or equal
to my_token_seq; otherwise, the token is discarded as redundant. If the token is
accepted, the processor increments token_seq and sets my_token_seq to the new
value of token_seq. Token retransmission increases the probability that the token
will be received at the next site and incurs minimal overhead. The membership

algorithm described in Section 4.2 handles the loss of all copies of the token.
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Regular token received:
if token.ring_id # my_ring_id or token.token_seq < my_token_seq then
discard token
else
cancel Token Retransmission timeout
determine how many msgs I'm allowed_to_broadcast
by flow control
update retransmission requests
broadcast requested retransmissions
subtract retransmissions from allowed_to_broadcast
for allowed_to_broadcast iterations do
get message from new_message_queue
increment token.seq
set message header fields and broadcast message
endfor
update my_aru
if my_aru < token.aru or my_id = token.aru_id or
token.aruid = invalid then
token.aru := my_aru
if token.aru = token.seq then
token.aruid = invalid
else token.aruid = my_d
endif
endif
Determine failure to receive (detailed in Figure 4.4)
update token rtr and flow control fields
last_aru_seen := token.aru
increment token.token _seq
my_token_seq := token.token _seq
forward token
set Token Retransmission timeout
deliver messages that satisfy their delivery criteria

endif

33

Figure 4.1: Algorithm executed by a processor or a gateway on receipt

of a token.
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Regular message received:
add message to receive_message_queue
update retransmission request list
update my_aru
deliver messages that satisfy their delivery criteria

Figure 4.2: Algorithm executed by a processor or a gateway on receipt

of a regular message.

4.2 The Membership Algorithm

The Totem single-ring ordering algorithm is optimized for high performance
under failure-free conditions, but depends on a membership algorithm to han-
dle token loss, processor failure, and network partitioning. The membership
algorithm detects these events and constructs a new ring on which the Totem
single-ring ordering algorithm can resume operation. The objective of the mem-
bership algorithm is to reach consensus on the membership of the new ring, to
generate a new token, and to recover messages that had not been delivered by
some of the processors when the failure occurred.

Termination of the membership algorithm is achieved by only allowing the
set of processors considered for membership and the set of processors regarded
as failed to increase monotonically, by bounding with timeouts the time that
a processor spends in each of the states, and by forcing an additional failure

rather than repeating a proposed membership.

The States of the Membership Algorithm

The membership algorithm is described by four states illustrated in Figure 4.3,
we list the states here before defining the algorithm below.

e Operational State. In the Operational state messages are broadcast

and delivered in agreed or safe order, as described in Section 4.1.

o Gather State. In the Gather state processors exchange Join messages
with one another to reach consensus on a ring membership. Each Join

message contains a set of processors being considered for membership in
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Commit token received

Operational
Foreign or Join message
received

Join received Token Loss timeout Extended virtual synchrony
and not

(Consensus and Representative;

Consensus, Token Loss, ‘
or Join timeout '

Foreign message
received

Token Loss timeout or Foreign message
received

Join received with larger seq than ring_seq
(sender in my Join) Recover .

Join received with
seq <= ring_seq or
sender not in my Join

(Join received and

Consensus and

Representative) or

received Commit token (1st rotation)

Commit token received
and Representative

Commit token received
(2nd rotation)

Token Loss timeout or
Join received with larger seq than ring_seq
(sender in my Join)

Join received with
seq <= ring_seq or
sender not in my Join

Foreign message
received

Commit token
received (1st round)

Figure 4.3: The finite state machine for the membership algorithm.

the new ring by the processor broadcasting the Join message and also a

set of processors regarded as failed.

e Commit State. On reaching consensus, the representative constructs an
identifier for the ring and launches a Commit token. Circulation of the
Commit token confirms that all members of the ring agree on the mem-
bership, and collects information needed to determine correct handling of
the messages from the old ring that had not been delivered by some of the

processors when the membership algorithm started.

e Recover State. In the Recover state processors use the new ring to

retransmit messages from their old rings.

The Events of the Membership Algorithm

There are seven membership events, namely:

e Receiving a foreign message broadcast by a processor that is not a member
of the ring. A foreign message activates the membership algorithm in the

processor that receives it.
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Receiving a Join message, which informs the receiver of the sender’s pro-
posed membership and may cause the receiver to enlarge its my_proc_set

or my_fail_set.

Receiving a Commit token. On the first reception of the Commit token a
member of the proposed new ring updates the Commit token. On the sec-
ond reception it obtains the updated information that the other members

have supplied.

Token Loss timeout. This timeout indicates that a processor did not
receive the token or regular messages from other processors on the ring in

the required amount of time and activates the membership algorithm.

Join timeout. This timeout is used to determine the interval after which

a Join message is rebroadcast in the Gather or Commit states.

Consensus timeout. This timeout indicates that a processor participating
in the formation of a new ring failed to reach consensus in the required

amount of time.

Recognizing failure to receive. If the aru has not advanced in several
rotations of the token, a processor determines that the processor that set

this aru has repeatedly failed to receive a message.

The Data Structures

Local Variables

Each processor maintains the following local variables:

my_ring_id: The ring identifier in the most recent Commit token that the

processor has accepted.
my_old_ring_id: The ring identifier of the last ring this processor installed.

my_rotation_count:. The number of times that the processor has forwarded
the token.
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my_last_aru: The value of the aru when the processor last forwarded the

token.

my_aru_count: The number of times that the processor has received the

token with an unchanged aru where the aru is not equal to seq.
my_-memb: The set of identifiers of processors on the current ring.

my_trans_memb: The set of identifiers of processors that are transitioning

from the processor’s old ring to its new ring.
my_new_memb: The set of identifiers of processors on the new ring.

my_proc_set: The set of identifiers of processors that are under considera-

tion for the membership of a new ring.

my_fail_set: The set of identifiers of processors that the processor has
determined to have failed during execution of the membership algorithm

(a subset of my_proc_set).

consensus: A boolean array indexed by processors and indicating whether

each processor is committed to the processor’s my_proc_set and my_fail_set.

my_deliver_memb: The set of identifiers of processors whose messages the

processor must deliver in the transitional configuration.

my_received_flg: A flag that indicates whether the processor has received

all messages from processors in my_deliver_memb.

my_last: A list of Join messages that have been received from other pro-

CEeSsOors.

discard_regular_token: A boolean to decide whether the regular token

should be discarded.

high_ring_delivered: The largest old ring sequence number of any message

delivered on the old ring by the processors in my_deliver_memb.
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o low_ring_aru: The lowest aru value of any of the processors in

my_deliver_memb.

When a processor first comes up, it initializes the representative identifier in
my_ring_id to its processor identifier and the sequence number to the value
contained in stable storage. When a processor installs a new ring, it initializes
my_memb and my_proc_set to the set of identifiers of processors on the new
ring, my_fail_set and my_last to the empty set, my_old_ring_id to my_ring_id,
and my_received_flg and discard_reqular_token to false. A processor initializes
my_last_aru, my_aru_count, and my_rotation_count to zero in the membership
algorithm during the formation of the ring, and updates these variables each

time it forwards the token.

The Join Message

Each time a processor in the Gather state modifies my_proc_set or my_fail_set
it broadcasts a special type of message, the Join message. Join messages differ
from regular messages in that a processor may broadcast a Join message without
holding the token; moreover, Join messages are not retransmitted or delivered

to the next higher layer. A Join message contains the following fields:
e lype: Join.
o sender_id: The processor identifier of the sender.
o ring_seq: The largest sequence number of a ring_id known to the sender.

o proc_set: The set of identifiers of processors that are under consideration

for membership in a new ring.

o fail_set: The set of identifiers of processors that the sender has determined
to have failed during execution of the membership algorithm (a subset of

proc_set).

e rotation_count: The number of times the sender has forwarded the token

since reaching consensus.
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The processor broadcasting the Join message sets the proc_set, fail_set, and
rotation_count fields of the Join message to the values of its local variables
my_proc_set, my_fail_set, and my_rotation_count, respectively. It also sets the
ring_seq field of the Join message to the ring sequence number in my_ring_id.
Each time a processor broadcasts a Join message, it is trying to achieve
consensus on the proc_set and fail_set in the Join message. The ring_seq field
allows the receiver of a Join message to determine if the sender has abandoned
a past round of consensus and is now attempting to form a new membership.

It is also used to create unique transitional ring identifiers.

The Configuration Change Message

The membership algorithm uses another special type of message, the Configu-

ration Change message, which contains the following fields:

o ring_id: The identifier of the regular configuration that this message ini-
tiates if the message initiates a regular configuration or the identifier of
the preceding regular configuration if this message initiates a transitional

configuration.

o seq: 0 if this message initiates a regular configuration or the largest se-
quence number of a message delivered in the preceding regular configura-

tion if this message initiates a transitional configuration.

o conf_id: The identifier of the old transitional configuration from which the
processor is transitioning if this message initiates a regular configuration
or the identifier of the transitional configuration to which the processor is

transitioning if this message initiates a transitional configuration.

o memb: The membership of the configuration that this message initiates.

The ring_id, seq and conf_id fields comprise the identifier of the message. A
Configuration Change message may describe a change from an old configuration
to a transitional configuration or from a transitional configuration to a new
configuration. Configuration Change messages differ from regular messages in
that they are generated locally at each processor and are delivered directly to
the application without being broadcast. They are used to inform the next

higher layer when membership changes occur.
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The Commit Token

Each new ring is initiated by one of its members, the representative, a processor
chosen deterministically from the members of the ring. The representative gen-
erates a Commit token that differs from the regular token in that its type field

is set to Commit and it contains the following fields in place of the ritr field:

o memb_list: A list containing a processor identifier, my_old_ring_id,
old_ring_my_aru, my_received_flg, and my_high_delivered fields for each
member of the new ring. The my_received_flg field indicates whether
the member has received all messages from the processors in its
my_deliver_memb in a previous failed pass through the Recover state in
which the new ring was not installed. The my_high_delivered field is the
largest sequence number of a message that the processor has delivered on
the old ring. This list is ordered according to the positions of the members

on the new ring.

o memb_index: The index of the processor in the memb_list that last for-

warded the Commit token.

On the first rotation of the Commit token around the new ring,
each processor sets its my_old_ring_id, old_ring_my_aru, my_received_flg, and
my_high_delivered fields in the token. It also updates memb_indexr. The re-

maining fields are set by the representative when it creates the Commit token.

The Algorithm

A processor that starts or restarts first forms and installs a singleton ring con-
taining only itself; it then broadcasts a Join message containing the value of

my_ring_id.seq from its stable storage and proceeds to the Gather state.

The Operational State

The total ordering algorithm described in Section 4.1 is executed by a processor
while in the Operational state. When the Token Loss timeout expires or when
a Join or foreign message is received by a processor on the ring, the algorithm

for the formation of a new ring is invoked in the Operational state. Join and
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Regular token received

in addition to the actions listed in Figure 4.1

increment my_rotation_count and

Determine failure to receive (described below)

if token.aru = last_aru_seen and token.aru.d # invalid then
increment my_aru_count

else
my_aru_count := 0

endif

if my_aru_count > fail_rcv_const and token.aruid # my.d then
add token.aru_id to my _fail_set
Call Shift_to_Gather

endif

Token Loss timeout expired
discard _regular_token := true

call Shift_to_Gather

Foreign message from processor q received:
add message.sender_id to my_proc_set

call Shift_to_Gather

Join message from processor q received:
same as in Gather state (Figure 4.6) except always call Shift_to_Gather
before returning regardless of content of Join message

Commit token received:
discard the Commit token

Figure 4.4: Algorithm executed by a processor or a gateway on occurrence

of a membership event in the Operational state.

Consensus timeouts cannot occur in the Operational state. If a processor re-
ceives a Commit token, it discards that token. A description of the actions
taken by a processor in the Operational state when a membership change event
occurs 1s given below. The pseudocode executed by a processor or gateway in

the Operational state is shown in Figure 4.4.

Token Loss Timeout

On expiration of the Token Loss timeout in the Operational state, a processor

broadcasts a Join message, sets the Join and Consensus timeouts, and shifts to
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the Gather state. The pseudocode executed by a processor when it shifts to the
Gather state is given in Figure 4.5.

Receiving a Foreign Message

If a processor receives a foreign message in the Operational state that is not
a message retransmitted in the Recover state, it sets my_proc_set to the union
of its current my_proc_set and the singleton set containing the identifier of the

sender of the foreign message. It then shifts to the Gather state (Figure 4.5).

Receiving a Join Message

It a processor receives a Join message in the Operational state and if the re-
ceiver’s identifier is in the Join message’s fail_set or if the sender’s identifier is
in the receiver’s my_proc_set and the Join message’s ring_seq is less than the
receiver’s ring sequence number, then it ignores the Join message. Otherwise,
the processor updates its my_proc_set and my_fail_set as in the Gather state
described below and shifts to the Gather state (Figure 4.5).

Recognizing Failure to Receive

A processor buffers a message for retransmission until receipt of the message
has been acknowledged by the other processors on the ring. If a processor
repeatedly fails to receive a particular message, then the other processors will
buffer that message and all subsequent messages until that message is received.
A processor cannot be allowed to fail to receive messages indefinitely because
that failure might impose excessive buffering requirements, and prevent other

processors from delivering messages in safe order.

When its local variable my_aru_count reaches a predetermined constant, a
processor determines that some other processor has failed, namely the processor
whose identifier is in the aru_id field of the token. The processor then discards
the token, updates my_fail_set to include the processor identifier in aru_id and
shifts to the Gather state (Figure 4.5).
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Shift_to_Gather

broadcast Join message containing my_proc_set, my fail set,

my rotation_count, and seq := my_ring_id.seq
cancel Token Loss timeout and Token Retransmission timeout
reset Join and Consensus timeouts
discard _regular_token := true
for all q in my_proc_set do consensus[q] := false endfor
consensus[my_id] := true
for all messages in my_last do

if message.proc_set = my_proc_set and

message.fail_set = my fail_set then
consensus[q] := true

endif
endfor
state := Gather
call Try_to_Form

Figure 4.5: Algorithm executed by a processor or a gateway to shift to
the Gather state.

The Gather State

The objective of the Gather state is to achieve a membership that is as large
as possible, while ensuring that the membership algorithm terminates. A mem-
bership is a set of processor identifiers on which the processors agree and in
which every processor can communicate with every other processor. The ac-
tions on receiving a regular token or a foreign message in the Gather state and
on detecting failure to receive in the Gather state are similar to the actions
in the Operational state. In the Gather state a processor collects information
about operational processors and failed processors. This information is broad-
cast in Join messages. The pseudocode executed by a processor or gateway in
the Gather state is shown in Figures 4.6 and 4.7.

Receiving a Join Message

When a processor receives a Join message in the Gather state, it updates its
my_proc_set and my_fail_set as described below. If its my_proc_set and my_fail_set
have changed, it abandons its previous consensus, broadcasts a new Join mes-
sage containing the updated sets, and resets the Join and Consensus timeouts.

The processor remains in the Gather state.
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Regular token or regular message received:
same as in Operational state

Foreign message from processor q received:
if ¢ not in my_proc_set then
add message.sender_id to my_proc_set
call Shift_to_Gather
endif

Join message from processor q received:
if my_proc_set = message.proc_set and
my fail_set = message.fail_set then
consensus[q] := true
call Try_to_Form
return
else if message.proc_set is a subset of my_proc_set and
message.fail_set is a subset of my fail_set then
return
else if q in my fail_set then return
else /* there is something in this Join message not in mine */
add message.proc_set to my_proc_set
if my_id in message.fail_set then
add message.sender_id to my_fail set
else
if ¢ in my_memb then
if q not in my_fail_set then add message.fail set to my fail set
else
add message.fail_ set — my_memb to my_fail_set
endif
endif
add message to my last
call Shift_to_Gather
endif

Figure 4.6: Algorithm executed by a processor or a gateway in the Gather

state on receipt of a regular message, regular token or Join message.
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Commit token received:
if my_proc_set — my _fail_set = token.memb and
token.seq > my_ring_id.seq then
call Shift_to_Commit
endif

Join timeout expired:
broadcast Join message with my_proc_set, my_fail set,
my rotation_count and seq = my_ring_id.seq
set Join timeout

Consensus timeout expired:
empty my_last
if consensus not reached then
for each processor q where consensus|q] # true do
add q to my_fail_set
endfor
call Shift_to_Gather
else
for all q do consensus[q] := false
consensus[my_id] := true
set Token Loss timeout

endif

Token Loss timeout expired:
if reached consensus on same membership second time then
add processor with lowest my_rotation_count to my_fail_set
else
execute code for Consensus timeout expired in Gather state
endif
call Shift_to_Gather

Figure 4.7: Algorithm executed by a processor or a gateway in the Gather
state on receipt of a Commit token, Join timeout, Consensus timeout or

Token Loss timeout.
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Updating the Membership on Reception of a Join Message

It a processor receives a Join message with a proc_set and fail_set identical to
its my_proc_set and my_fail_set, respectively, the processor records the sender of
the Join message as participating in the consensus on those sets.

If a processor receives a Join message such that the sender’s identifier is
in the receiver’s my_fail_set, it ignores that Join message. This is appropriate
because a processor never declares itself failed. If a processor receives a Join
message such that the receiver’s identifier is in the Join message’s fail_set, the
receiver updates both my_proc_set and my_fail_set to include the identifier of the
sender of the Join message. This is appropriate because those two processors
will not be able to reach consensus on a membership that excludes one of them.

If a processor receives a Join message such that (1) the receiver’s identifier is
not in the Join message’s fail_set, (2) the sender’s identifier is not in the receiver’s
my_fail_set, and (3) the Join message’s proc_set or fail_set contains at least one
identifier that is not in the receiver’s my_proc_set or my_fail_set, respectively,
then the receiver adds to its my_proc_set and my_fail_set the identifiers in the
Join message’s proc_set and fail_set, respectively, with the following exception.
If the sender is not a member of the receiver’s old ring, then the receiver does
not add an identifier of a member of its own old ring to its my_fail_set. This
exception is intended to bias the membership algorithm towards preserving

existing rings by preventing an outsider from breaking up an existing ring.

The Join Timeout and Rebroadcasting Join Messages

Each time a processor broadcasts a Join message, it sets or resets the Join
timeout. When the Join timeout expires, the processor rebroadcasts the Join
message. The Join timeout is shorter than the Consensus timeout and is used to
increase the probability that Join messages from all currently working processors

are received during a single round of consensus.



4.2. THE MEMBERSHIP ALGORITHM 47

Reaching Consensus

A processor has reached consensus when it has received Join messages with
proc_set and fail_set equal to its my_proc_set and my_fail_set, respectively, from
every processor in the difference of those sets, i.e. my_proc_set — my_fail_set. A
processor is also considered to have reached consensus when it has received a
Commit token with the same membership as my_proc_set — my_fail_set. The
processors in that difference constitute the membership of the proposed new
ring.

When a processor has reached consensus, it determines whether it is the
representative of the proposed new ring. If it is not the representative and
has not received the Commit token, the processor sets the Token Loss timeout,
cancels the Consensus timeout and continues in the Gather state, waiting for
the Commit token.

If it is the representative, the processor generates a Commit token. It de-
termines the ring_id of the new ring, which is composed of the representative’s
identifier and a ring sequence number equal to four plus the largest ring sequence
number in any of the Join messages used to reach consensus (the sequence num-
ber two less than that of the new ring is used to create a unique transitional
ring identifier). It also determines the memb_list of the Commit token, which
specifies the membership of the new ring and the order in which the token will
circulate, with the representative placed first. In addition, the representative
sets the type field of the Commit token to Commut, the token_seq field to 0, the
seq field to 0, the aru field to 0, the fec field to 0 and the retrans_flg field to
false. It also sets the my_old_ring_id, old ring my_aru, my_received_flg and
my_high_delivered fields in its entry of the memb_list field of the token and
sets the memb_index field to 1. The representative cancels the Consensus time-
out, sets the Token Loss timeout, transmits the Commit token, and shifts to
the Commit state. The pseudocode executed by the representative on reaching

consensus 1is given in Figure 4.8.
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Try_to_Form

if for all q in my_proc_set — my fail set, consensus[q] = true and
my_id = smallest_id of my_proc_set — my fail_set then
token.ring id.seq := maximum of my ring_id.seq and Join ring_seqs + 4
token_memb := my_proc_set — my _fail_set
call Shift_to_Commit
endif

Figure 4.8: Algorithm executed by a processor or a gateway on reaching

consensus.
Receiving a Commit Token

On receiving a Commit token, there are several acceptance tests performed by
a processor. The processor first ensures that the ring sequence number in the
ring_id field is greater than the ring sequence number in my_ring_td and that
the token_seq field is less than the cardinality of my_proc_set - my_fail_set. The
processor next compares the proposed membership, given by the memb_list in
the Commit token, with the difference of its my_proc_set and my_fail_set. If
they differ, the processor discards the Commit token. If they agree, it ex-
tracts the ring_id for the new ring, sets the my_old_ring_id, old ring my_aru,
my_received_flg, and my_high_delivered fields in its entry of the memb_list field of
the token, and increments the memb_index field of the token. It also initializes
its my_rotation_count to 1 and increments the token_seq field of the token and
sets my_token_seq equal to token_seq. The processor then cancels the Consensus
timeout, resets the Token Loss timeout, forwards the Commit token, and shifts
to the Commit state. The pseudocode executed by a processor when it shifts

to the Commit state is given in Figure 4.9.
The Consensus Timeout

It the Consensus timeout expires before a processor has reached consensus, it
adds to my_fail_set all of the processors in my_proc_set from which it has not
received a Join message with proc_set and fail_set equal to its own sets. It then
shifts to the Gather state (Figure 4.5).
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Shift_to_Commit

update memb_list in Commit_token with my_old ring_id, my_aru,
my received _flg, and my _high_delivered

my_ring_id := Commit token ring.id

my_rotation_count := 1

forward Commit token

empty my_last

cancel Join and Consensus timeouts

reset Token Loss timeout and Token Retransmission timeout

state := Commit

Figure 4.9: Algorithm executed by a processor or a gateway to shift to

the Commit state.

The Token Loss Timeout

When a processor enters the Gather state, it cancels the Token Loss timeout.
On reaching consensus the processor sets the Token Loss timeout and awaits
the Commit token. If the Token Loss timeout expires, it remains in the Gather
state and tries to reach consensus again. If it then reaches consensus on the
same my_proc_set and my_fail_set as it had previously, it adds one processor to
its my_fail_set and broadcasts another Join message. The processor added to
my_fail_set is the first processor on the token rotation path that forwarded the
token the fewest times, as determined by the my_rotation_count fields of the
Join messages. If this is the processor itself, it forms a singleton ring. The same
mechanism applies if the processor returns to the Gather state on a Token Loss
timeout from the Commit or Recover state and reaches consensus on the same
my_proc_set and my_fail_set as it had previously.

If the Commit token subsequently reaches a processor that has already de-
termined that the token is lost because its Token Loss timeout expired, the

processor discards the token.

The Commit State

The objective of the Commit state is to establish that all members of the pro-
posed new ring agree on the membership and to collect information needed for

the recovery algorithm. In the Commit state regular tokens are discarded, for-
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Regular token received:
discard token

Regular message received:
same as in Operational state

Foreign message received:
discard message

Join message from processor q received:
if q in my_new_memb and message.ring_seq > my_ring_id.seq then
execute code for receipt of Join message in Gather state
call Shift_to_Gather
endif

Commit token received:
if token.seq = my_ring_id.seq then call Shift_to_Recover

Join timeout expired:
same as in Gather state

Token Loss timeout expired:

call Shift_to_Gather

Figure 4.10: Algorithm executed by a processor or a gateway in the

Comiit state.

eign messages are ignored, Token Loss and Join timeouts are handled as in the
Gather state, and Consensus timeout and recognition of failure to receive do not
occur. The pseudocode executed by a processor or gateway when it shifts to the
Commit state is given in Figure 4.9. The pseudocode executed by a processor

or gateway in the Commit state is shown in Figure 4.10.
Receiving a Commit Token

On receiving a Commit token during its second rotation on the proposed new
ring, a processor obtains, for each processor on that ring, the my_old_ring_id
and old_ring_my_aru of that processor’s old ring. From this information the
processor calculates my_trans_memb, consisting of the processors transition-
ing from its same old ring. The processor then writes my_ring_id.seq to sta-
ble storage and forwards the token. If some processor in my_trans_memb has
its my_received_flg set to false, the processor shifts to the Recover state (Fig-
ure 4.11), sets my_deliver-memb, low_ring_aru, my_received_flg (to false), and

high_ring_delivered fields, and then executes the recovery algorithm. If each of
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Shift_to_Recover

forward Commit token /* second time */

write my _ring_id.seq to stable storage

my_aru_count := 0

increment my_rotation_count

discard _regular_token := false

my new_memb := membership in Commit token

my_trans_memb := members on old ring transitioning to new ring

if for some processor in my_trans_memb my received_flg = false then
my _deliver_memb := my_trans_memb
my received _flg := false
low_ring_aru := lowest aru for old ring for processors in my_deliver_memb
high ring_delivered := highest sequence number of message delivered

for old ring by a processor in my_deliver_memb
copy all messages from old ring with sequence number >
low_ring_aru into retrans_message_queue

endif

my_aru := 0

last_aru_seen := 0

my_retrans_flg_count := 0

reset Token Loss timeout and Token Retransmission timeout

state := Recover

Figure 4.11: Algorithm executed by a processor or a gateway to shift to

the Recover state.

the processors in my_trans_memb has its my_received_flg set to true, the proces-
sor likewise shifts to the Recover state, and executes the recovery algorithm,

but in this case no messages for the old ring need to be retransmitted.
Receiving a Join Message

If a processor receives a Join message in the Commit state from a member of
the proposed new ring and that Join message contains a ring_seq greater than
the ring sequence number of the proposed new ring, the processor abandons its
current consensus, updates my_proc_set and my_fail_set as in the Gather state
described above and shifts to the Gather state (Figure 4.5).

This is necessary because some processor has determined that either the

Commit token or the regular token for the new ring has been lost.
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A processor discards a token with a ring sequence number less than or equal
to its own ring sequence number. Such a token must be the token of an old or

abandoned ring.

The Recover State

On receiving the Commit token after its second rotation, the representative of
the new ring converts the Commit token into the regular token for the new ring,
replacing the memb_list and memb_index fields by the rtr field. At this point
the new ring is formed but not yet installed, and the recovery operation begins.
The recovery algorithm is described in Section 4.3.

In the Recover state failure to receive is handled exactly as in the Oper-
ational state, and Join messages are handled exactly as in the Commit state.
Foreign messages are ignored, and Join and Consensus timeouts do not occur.
Expiration of the Token Loss timeout in the Recover state results in a proces-
sor’s returning to the Gather state, where token loss is handled as though the

processor were a member of the old ring in the Gather state.

4.3 The Recovery Algorithm

The objective of the recovery algorithm is to recover the messages that had not
been delivered by some of the processors when the membership algorithm was
invoked, and to enable the processors transitioning from the same old configu-
ration to the same new configuration to deliver the same set of messages from
the old configuration. The recovery algorithm also maintains message delivery
guarantees to the application during recovery from failures. Maintenance of
these guarantees is essential to applications such as fault-tolerant distributed
databases. The pseudocode executed by a processor in the Recover state is

given in Figures 4.12 and 4.13.
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Regular token received:
same as in Operational state (Figures 4.1 and 4.4) except get messages from
retrans_message_queue instead of new_message_queue
and before forwarding the token execute:

if retrans_message_queue is not empty then
if token.retrans flg = false then token.retrans flg := true
else
if token.retrans flg = true and I set it then token.retrans flg := false
endif
if token.retrans flg = false then increment my retrans_flg_count
else my_retrans_flg_count := 0
endif
if my retrans_flg_count = 2 then my_install_seq := token.seq
if my _retrans_flg_count > 2 and my_aru > my _install_seq
and my received_flg = false then
my received flg := true
my _deliver_memb := my_trans_memb
endif
if my_retrans_flg_count > 3 and token.aru > my _install _seq
on last two rotations then
call Install_Ring
endif

Regular message received:
reset Token Loss timeout
add message to receive_message_queue
update my_aru
if retransmitted message from my_old ring_id then
add to receive_message_queue for old ring
remove message from retrans_message_queue for old ring

endif
Foreign message from processor q received: discard message

Join message from processor q received:
if g in my_new_memb
and message.ring_seq > my_ring_id.seq then
execute code for receipt of Join message in Commit state
execute code for Token Loss in Recover state

endif

Figure 4.12: Algorithm executed by a processor or a gateway in the
Recover state on receipt of a regular message, regular token, foreign

message or Join message.
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Commit token received:

/* new representative, i.e. smallest processor id */

convert Commit token to regular token

if retrans_message_queue is not empty then
token.retrans flg := true

else
token.retrans flg := false

endif

forward regular token

reset Token Loss timeout

increment my_rotation_count

Token Loss timeout expired:
discard _regular_token := true
discard all new messages received on the new ring
empty retrans_message_queue
determine current old ring aru (it may have increased)

call Shift_to_Gather

Figure 4.13: Algorithm executed by a processor or a gateway in the

Recover state on receipt of a Commit token or on a Token Loss timeout.

The Data Structures

The recovery algorithm uses the following data structures in addition to those

already introduced.

Token Field
The recovery algorithm depends on the following field of the token:

o retrans_flg: A flag that is used to determine whether there are any addi-

tional old ring messages that must be rebroadcast on the new ring.
The retrans_flg field of the token is initialized to false by the representative of

the new ring when it generates the Commit token.

Local Variables
The recovery algorithm also depends on the following local variables:
o my_install_seq: The largest new ring sequence number of any old ring mes-

sage transmitted on the new ring. The value of this variable is determined

locally, but has the same value for all processors that install the new ring.
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o my_retrans_count: The number of successive token rotations on which the

processor has received the token with retrans_flg false.

The Algorithm

A processor executing the recovery algorithm takes the following steps:

1. Exchange messages with the other processors that were members of the
same old ring to ensure that they have the same set of messages broadcast

on the old ring but not yet delivered.

2. Deliver to the application those messages that can be delivered on the
old ring according to the requirements for agreed or safe ordering, includ-
ing all messages with old ring sequence numbers less than or equal to

high_ring_delivered.

3. Deliver the first Configuration Change message changing to the transi-

tional configuration.

4. Deliver messages that could not be delivered in agreed or safe order on
the old ring because delivery might violate the requirements for agreed
or safe delivery, but that can be delivered in agreed or safe order in the

smaller transitional configuration.

5. Deliver a second Configuration Change message, changing to the new

configuration.
6. Shift to the Operational state.

Steps 2 through 6 involve no communication with other processors and are
performed as one atomic action. The pseudocode executed by a processor to
complete these steps is given in Figure 4.14. In the Operational state the pro-

cessor broadcasts and delivers messages for the new ring.

Exchange of Messages from the Old Ring (Step 1)

To implement the first step of the recovery algorithm, each processor that is a

member of the new ring determines the lowest my_aru of any processor from its
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Install_Ring

deliver messages deliverable on old ring
(at least up through high_ring_delivered)

deliver membership change for transitional configuration

deliver remaining messages from processors in my_deliver_memb
in transitional configuration

deliver membership change for new ring

my_memb := my_new_memb

my_proc_set := my_memb

my_old_ring_id := my_ring_id

my _fail_set := empty set

my received _flg := false

state := Operational

Figure 4.14: Algorithm executed by a processor or a gateway to install a

new ring.

old ring that is also a member of the new ring. The processor then broadcasts
on the new ring every message for the old ring that it has received and that
has a sequence number greater than the lowest my_aru. This ensures that each
processor receives as many messages as possible from the old ring.

Each message is broadcast with a new ring identifier and a new ring sequence
number, and encapsulates the old ring message with its old ring identifier and
old ring sequence number. The new ring sequence numbers are used to ensure
that messages are received; the old ring sequence numbers are used to order
messages as messages of the old ring. Messages from an old ring retransmitted
on the new ring are not delivered to the application by any processor that was
not a member of that old ring. No new messages are broadcast by a processor
in the Recover state.

Completion of the message exchange is determined by the retrans_flg field in
the token and by the local variable my_install_seq. The retrans_flgis initially set
to false, and a processor changes retrans_flg from false to true if it has more old
ring messages to retransmit when it forwards the token. A processor changes
retrans_flg from true to false if it set retrans_flg to true and now has no further

old ring messages to retransmit.
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When a processor has received the token on two successive rotations with
retrans_flg set to false, it knows that all of the old ring messages have been
retransmitted on the new ring. The processor then sets my_install_seq to the
value of the seq field in the token; thus, my_install_seq is the largest new ring
sequence number of any old ring message transmitted on the new ring. When
my_aru is at least equal to my_install_seq, the processor has received all of
the messages of the old ring that have been broadcast on the new ring. If
my_received_flg equals false, the processor then sets my_received_flg to true and
my_deliver_memb to my_trans_memb. The processor now has the complete set
of messages rebroadcast for the old ring by the processors in my_trans_memb.

If a processor has forwarded the token with retrans_flg set to false on two
successive token rotations and with the aru at least equal to my_install_seq on
the last of those rotations, the processor provides a guarantee to deliver messages
with sequence numbers at most equal to my_install_seq that were originated by
processors in my_deliver_memb unless it fails, by setting its my_received_flg to
true.

When a processor has received the token with retrans_flg set to false on three
successive token rotations and with the aru at least equal to my_install_seq on
the last two of those rotations, it determines that all processors on the ring
have the value for my_install_seq and have received all messages with sequence
numbers up to and including my_install_seq. The processor then proceeds to

the delivery of messages on the old ring without further message exchange.

Delivery of Messages on the Old Ring (Steps 2-3)

For each message, the processor must determine the appropriate membership
in which to deliver the message. A processor can deliver a message in agreed
order for the old ring if it is in sequence number order and all the messages with
lower sequence numbers have been delivered. A processor can deliver a message
in safe order for the old ring if it received the old ring token with the aru field
at least equal to the sequence number in the message twice in succession or if
some other processor already delivered the message on the old ring as indicated
by high_ring_delivered.

The processor sorts the messages for the old ring that were broadcast on

the new ring into the order of their sequence numbers on the old ring, and
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delivers messages in order until it encounters a gap in the message sequence
numbers or a message requiring safe delivery with a sequence number greater
than high_ring_delivered. The variable high_ring_delivered provides the informa-
tion that some processor delivered that message as safe on the old ring and
therefore that the message is deliverable on the old ring.

The processor then delivers the first Configuration Change message, which
contains the identifier of the old configuration, the identifier of the transitional
configuration, and the membership of the transitional configuration. The mem-
bership of the transitional configuration is my_trans_memb. The identifier of the
transitional configuration has sequence number two less than the sequence num-
ber of my_ring_id, and the representative’s identifier is chosen deterministically

from my_trans_memsb.

Delivery of Messages in the Transitional Configuration (Steps 4-6)

Following the first Configuration Change message, the processor delivers in or-
der all remaining messages that were originated on the old ring by processors in
my_deliver_memb. The processor then delivers a second Configuration Change
message, which contains the identifier of the transitional configuration, the iden-
tifier of the new configuration (my_ring-id), and the membership of the new
configuration (my_new_memb). The processor then shifts to the Operational
state (Figure 4.14).

Note that some messages cannot be delivered on the old ring or even in
the transitional configuration because delivery of those messages might violate
agreed or safe order. Such messages follow a gap in the message sequence. For
example, if processor p originates or delivers message my before it originates m,
and processor ¢ received my but did not receive my in the message exchange,
then processor ¢ cannot deliver my because causality would be violated. Here p
is not in the same transitional configuration as ¢ because, if p had been in the
same transitional configuration, then ¢ would have received all of the messages
originated by p before or during the message exchange.

Note also that a processor delivers messages for the old ring before it broad-
casts or delivers any new message for the new ring. The decision to shift to

the Operational state and the set of old ring messages to be delivered is a local
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decision. Some processors may be in the Operational state broadcasting mes-
sages for the new ring, while others are still in the Recover state and will install
the new ring if the token completes its next rotation. Note, however, that no
safe message is delivered on the new ring before all processors on the new ring

install that ring.

Failure of Recovery

If the recovery fails while the recovery algorithm is being executed (for example,
because the token is lost), some processors may have installed the new ring while
others have not. Prior to installation, a processor’s old ring is the ring of which
it was a member when it was last in the Operational state. Fach processor must
preserve its old ring identifier until it installs a new ring.

When a processor delivers a message in safe order in a transitional configu-
ration, it must have received a guarantee from all of the other members of the
configuration that they will deliver the message unless they fail. If the token is
lost in the Recover state, some processors may not install the new ring. Each
such processor will proceed in due course to install a different new ring with a
corresponding transitional configuration. It must deliver the message in that
transitional configuration in order to honor the guarantee.

Thus, if a processor has set its my_received_flg in the Commit token to true,
but the token is lost before this processor delivers those messages and installs
the new ring, then another processor in the transitional configuration, relying
on the guarantee, may have delivered messages from the old ring in safe order
and installed the new ring. Consequently, if a processor finds the my_received_flg
in the Commit token set to true for every processor in my_trans_memb, it must
retain the old ring messages originated by members of my_deliver_memb and
deliver them in the transitional configuration for the new ring that it actu-
ally installs. Note that my_trans_memb can only decrease on successive passes

through the Recover state before a new ring is installed.

Examples

Consider the simple example shown in Figure 4.15. Here a ring containing

processors p, ¢, r, s and t undergoes a partition in which p becomes isolated
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Figure 4.15: Regular and transitional configurations. The vertical lines
represent the total orders of messages that have been delivered in the
indicated configuration, and the dashed horizontal lines represent Con-

figuration Change messages.

while ¢, 7, s and ¢ merge into a new ring with v and v. Processors ¢, r, s and
t deliver two Configuration Change messages, one to switch from the regular
configuration {p, ¢,r, s, ¢} to the transitional configuration {q,r, s,t} and one to
switch from the transitional configuration {q¢,r,s,t} to the regular configura-
tion {q,r, s,t,u,v}. It may not be possible for processors ¢, r, s and ¢ to deliver
all messages originated in the regular configuration {p,q,r, s,t}, since some of
these messages from p may not have been received before p became isolated;
however, it can be guaranteed that in the transitional configuration {q,r,s,t}
all messages originated by a processor of that configuration have been deliv-
ered. Similarly, it may not be possible to deliver a message safe in the regular
configuration {p,q,r,s,t} because no information is available as to whether p
had received that message before it became isolated, but it is possible to deliver
the message safe in the transitional configuration {¢,r,s,t}. The first Config-
uration Change message separates the messages that are delivered in the old
configuration {p,¢q,r,s,t} from the messages that are delivered in the reduced

transitional configuration {¢,r,s,t}.

Next consider the example in Figure 4.16, a modification of the example in
Figure 4.15. Here, a further problem occurs late in the membership algorithm
so that processors ¢ and r do not complete the recovery algorithm steps 2-6,
while processors s, ¢, u and v do complete the steps and install the regular
configuration {q,r,s,t,u,v}. It is impossible to guarantee that a processor will

install a configuration only if it determines that all other members of that con-
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Figure 4.16: Regular and transitional configurations. The vertical lines
represent the total orders of messages that have been delivered in the
indicated configuration, and the dashed horizontal lines represent Con-
figuration Change messages. The parentheses around ¢ and r indicate

that these processors did not actually install the regular configuration

{Qa r, Sata u, U}-

figuration will install it, because that would require common knowledge which
is impossible to achieve.

In this example, processor ¢ is subsequently able to reinitiate the membership
algorithm to form and install the new ring {q,s,t, u,v}. During this second
attempt to form that ring, processors s, t, u and v are transitioning from the
regular configuration {q,r, s,t, u, v} to the regular configuration {¢, s,¢,u, v} but
processor ¢ is still transitioning from the regular configuration {p,q,r,s,t} to
the regular configuration {q,s,t,u, v}, so processor ¢’s transitional configuration
is {q}.

Although processors ¢ and r did not install transitional configuration
{q,r, 8,1}, processors s and ¢ have accepted the guarantees of ¢ and r that they
have received messages from s and ¢ and may have delivered those messages as
safe in the transitional configuration {¢,r,s,¢}. Consequently, since processors
g and r have received all of the messages needed for the transitional configura-
tion {q,r,s,t} and have acknowledged reception of those messages, they must
deliver those messages in the transitional configuration they install even if, as

in this example, that configuration is smaller.
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After the second Configuration Change message, p and r are both members
of singleton configurations {p} and {r} respectively and messages from other
processors are not delivered by p or . When p or r rejoins the other processors
in some subsequent configuration, the application programs must update their
states, using application-specific algorithms, to reflect activities that were not
communicated while the system was partitioned. The Configuration Change
messages warn the application that a membership change has occurred, so that
the application programs can take appropriate action based on the membership
change. Extended virtual synchrony guarantees a consistent order of message
delivery across a partition, which is essential if the application programs are to
be able to reconcile their states following repair of a failed processor or remerging

of the partitioned network.

4.4 Performance

The Totem protocol is designed to provide high performance. Reliable ordered
delivery is of little value if the throughput of the protocol is low or the latency to
delivery is high. Effective flow control is required to achieve desired performance

characteristics.

Flow Control

With point-to-point communication, positive acknowledgment protocols, such
as the sliding-window protocol [10], have been refined to provide excellent flow
control. However, with broadcast communication, positive acknowledgment
protocols result in an excessive number of acknowledgments. Rate-controlled
protocols have attracted attention recently [54], but have the disadvantage when
used with broadcast protocols that the aggregate rate of all transmitters must
be controlled. The maximum transmission rate for each processor must be set
to a value that is unacceptably low for applications with bursty communication
patterns.

A basic characteristic of reliable broadcast and multicast protocols is that

the rate of broadcasting messages cannot exceed the rate at which the slowest
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processor can receive and process messages. At higher rates of broadcasting, the
input buffer of the slowest processor will become full and messages will be lost.
Retransmission of those messages will increase the message traffic and reduce
the effective transmission rate.

Effective flow control, capable of preventing message loss due to buffer over-
flow at high transmission rates, is essential to the attainment of high throughput,
since retransmissions reduce the available bandwidth and increase the latency.
Existing broadcast protocols must be throttled at relatively low rates of broad-
casting to avoid high rates of message loss and, thus, exhibit poor performance

when the traffic is bursty.

The Data Structures

Regular Token
The following field is added to the regular token:

o retrans_round: The number of retransmissions sent in the last round of
the token.

Local Variables

Each processor maintains the following local variables:

o last_token_seq: The message sequence number on the token (token.seq)

last time it was received.

o window_size: The number of messages which can be sent by all processors

during a rotation of the token.

o cach_time: The maximum number of messages which can be sent by this

processor during any visit of the token.

o last_retrans: The number of retransmissions by this processor on the last
visit of the token.

o allowed_to_send: The number of messages this processor can send on this

token visit.
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The retrans_round field of the token is initialized to zero when the token is
generated. The last_token_seq and last_retrans fields are intitialized to zero by
the processor in the membership algorithm during the formation of the ring.

The values for window_size and each_time are determined heuristically.

The Algorithm

The Totem protocol uses a simple flow-control algorithm to control the number
of messages broadcast during one rotation of the token. If a processor is un-
able to process messages at the rate at which they are broadcast, one or more
messages will be in its input buffer when the token arrives. Before processing
the token and broadcasting messages, a processor must empty its input buffer.
Thus, the rate of broadcasting messages is reduced to the rate at which mes-
sages can be processed by that processor. If the window_size is limited by the
size of each processor’s input buffer, buffer overflow cannot occur.

In practice, it is possible to increase the window_size to a larger number
of messages than the input buffer can contain. As the token rotates around
the ring, a processor can receive and process messages, freeing buffer space for
subsequent messages in the same rotation. An appropriate value for window_size
can be found by experimentation, but care must be taken to allow for processors
that may occasionally be heavily loaded and for other uncontrolled traffic on
the network.

There is also a limit on the number of messages an individual processor is
allowed to send during one visit of the token. This limit contributes to fairness
in distributing window_size among the processors on the ring and is specified by
each_time. Retransmissions are included in the number of messages sent. The
pseudocode executed by a processor to calculate the number of messages this
processor is allowed to send on this token visit is given in Figure 4.17.

Before forwarding the token a processor updates the token retrans_round
field by subtracting last_retrans and adding the number of messages retransmit
this token visit. The processor then sets last_retrans to equal the number of
messages retransmit this token visit. The processor also set last_token_seq to

equal the seq field in the token.
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Flow_Control

allowed_to_send := window_size + each_time —
(token.seq — last_token_seq + token.retrans_round)
if ( allowed_to_send > each_time ) then
allowed_to_send := each_time
endif
if ( allowed_to_send < 0 ) then
allowed_to_send := 0

endif

Figure 4.17: Algorithm executed by a processor or a gateway to deter-

mine how many messages can be sent on this token visit.

Although more sophisticated flow control schemes can be used, they have

not proven necessary.

Analytical Model

The latency to order a message in the Totem single-ring protocol is a function
of the token rotation time. Under low loads, where the probability is small that
a processor is prevented by the flow-control mechanism from broadcasting all
of its pending messages during each visit of the token, the latency to agreed
delivery is approximately one-half of a token rotation time and the latency to
safe delivery is approximately two token rotation times. Assuming that no mes-

sages are lost, we now calculate the token rotation time. We use the following

denotations:
N Number of processors on the ring
T Token rotation time
p Utilization of the communication medium
a Mean time to broadcast one message
r Ratio of the mean time to process and broadcast one message
to the mean time to broadcast
b Token processing and transmission time for one processor

m  Mean number of messages broadcast by one processor

during one visit of the token
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M Maximum number of messages that all processors are allowed

to broadcast in any token rotation, i.e. window_size

In the calculation we assume that the time to receive and process a message
is approximately equal to the time to process and broadcast the message. If
the receive time is substantially greater than the broadcast time, then a and
r should be derived from the time to receive messages rather than the time to
broadcast messages.

The useful utilization of the communication medium is given by

Nma ma

- Nb+ Nmra - b+ mra

P
from which it follows that ;
_ P
“= m(l —rp)
Thus, the token rotation time is
Nb

Furthermore, the maximum token rotation time is Nb 4+ Mra, while the maxi-

T:Nb—l—]\fmra:1

mum utilization of the communication medium is Ma/(Nb+ Mra).

Simulation

A simulator has been built using the C programming language to allow study
and debugging of the Totem single-ring protocol [20, 21]. In the simulator,
the object code of the Totem single-ring protocol implementation is linked to
a simulated communication medium. The simulated communication medium
allows the injection of faults, partitions, and merges. The distributed nature and
high performance of the Totem single-ring protocol make it difficult to study and
debug when running on an actual network. The simulator can instead be run
step-by-step and protocol behavior during failures can be studied in-depth. The
simulator also provides an environment in which systems with more processors
than are physically available can be studied.

A graphical interface for the simulator has also been developed [33]. The
graphical interface displays the current ring membership and delivery character-

istics for each of the processors. In particular, the monitor shows which messages
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Figure 4.18: The number of ordered broadcast messages per second for
various message sizes for a network of five Sun 4/IPC processors running
the Totem single-ring protocol. The solid line indicates throughput when
the traffic is generated by all the processors, and the dotted line shows

the throughput when the messages are generated by a single processor.

were delivered in the old, transitional, and new configurations respectively for

each processor.

Implementation

The Totem single-ring reliable ordering and membership protocol has been im-
plemented using the C programming language on a network of Sun 4/IPC work-
stations connected by an Ethernet. The implementation uses the standard UDP
broadcast interface within the Unix operating system (SunOS 4.1.1). One UDP
socket is used for all broadcast messages, and a separate UDP socket is used by
each processor to receive the token from its predecessor on the ring.
Measurements from the implementation show excellent performance. Figure
4.18 shows the number of messages ordered per second for messages of various
sizes. These measurements were made on a network of five Sun 4/IPC work-
stations with the window_size set to the maximum value for which message loss

is negligible in order to maximize throughput. Note that with 1024 byte mes-
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Figure 4.19: The utilization of the Ethernet for various message sizes
for a network of five Sun 4/IPC processors running the Totem protocol.
The solid line indicates utilization when the traffic is evenly distributed
across all five processors, and the dotted line shows the utilization when

the messages are generated by a single processor.

sages (window_size = 70 when all 5 processors are sending), 810 messages are
ordered per second. Reducing the message size to 600 bytes results in over 900
ordered messages per second. Further reducing the message size to 4 bytes to
measure the protocol overhead results in 1130 messages ordered per second. As
can also be seen from Figure 4.18 the number of messages ordered per second is
relatively unaffected by the number of senders; similar throughput figures are
obtained when all messages are broadcast by a single processor on the ring. The
highest prior rates for asynchronous fault-tolerant ordered broadcast messages
known to us for 1024 byte messages are about 300 messages per second for the
Transis protocol using the same equipment and for the Amoeba protocol [31]

using equipment of similar performance.

A concern about token-passing protocols, such as Totem, is that the token-
passing overhead reduces the transmission rate available for messages. Fig-
ure 4.19 depicts the useful utilization (excluding transmission of the token and

message headers) of the Ethernet achieved by the Totem protocol. With large
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Figure 4.20: The mean token rotation time and the mean latency from
generation of a message until it is delivered in agreed order and in safe

order by all processors on the ring as a function of load.

messages, a utilization of about 70% is achieved; this may be compared to
the approximately 65% utilization that can be achieved by TCP transmitting
messages point-to-point from a single source to a single destination with the
same equipment. This high utilization is achieved by the single-ring protocol
regardless of whether the traffic is distributed equally across the processors or
concentrated at a single source.

While Figure 4.18 depicts the maximum transmission rates measured us-
ing the Totem protocol over the Ethernet, Figure 4.20 considers performance
at lower, more typical loads with Poisson arrivals of messages and 1000 byte
messages. [t shows the token rotation time and the latency from generation
of a message until it is delivered in agreed order by all processors on the ring.
At low loads (e.g., 400 ordered messages per second which is much more than
the maximum throughput for prior protocols), the latency achieved by Totem
is under 10 milliseconds. Even at 50% useful utilization of the Ethernet (625
messages per second), the latency is still only about 13 milliseconds. Note that
the latency to agreed delivery is slightly more than half the token rotation time

and the latency to safe delivery is approximately twice the token rotation time,
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except at very high loads where queueing delays dominate. Also note that the
latency increases linearly with the size of the membership. These latency results
were measured in the simulator and verified on the implementation.

Also a concern with token passing protocols is the time to reach consensus
on membership and to begin rotation of the token after loss of the token. We
measured the time to membership by disabling the token retransmission mech-
anism and intentionally losing the token. In a test with the processors sending
1024 byte messages the time to complete the membership process, generate a
new token, and return to normal operation is on average 40 milliseconds plus the
token loss timeout; for these experiments the token loss timeout was 100 mil-
liseconds. With the token retransmission mechanism reactivated, the average

time to return to normal operation after loss of the token is 16 milliseconds.

4.5 Proof of Correctness

Membership

Uniqueness of Configurations
Theorem 4.1 Fach configuration identifier is unique; moreover, at any time a

processor is a member of at most one configuration.

Proof. On startup a processor forms a singleton ring containing only itself. On
forwarding the Commit token for a proposed new ring on its first rotation, a
processor abandons its current ring and becomes committed to the new ring.
The processor then forms a transitional configuration consisting of members of
its old ring and new ring. If the processor installs the new ring, it delivers two
Configuration Change messages. The first initiates a transitional configuration
and terminates the processor’s regular configuration (old ring), and the second
initiates the regular configuration (new ring) and terminates the transitional
configuration. Thus, a processor is a member of at most one configuration at a
time.

The identifier of a configuration (either regular or transitional) consists of
a “ring” sequence number (which is stored in stable storage) and the proces-

sor identifier of the representative (which is chosen deterministically from the
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members). We now show that, if there is a processor that is a member of two
different configurations Cy and (s with the same representative identifier, then
Cy and (5 have different ring sequence numbers. Since processor identifiers are
unique and do not change in time even if a processor fails and restarts, there is
a processor p that is the representative of both €y and (5. By the above, pis a
member of at most one configuration at a time, say p is a member of (; before
p is a member of (5. Then, since the ring sequence number of 5 is greater than
the maximum of the ring sequence numbers of the immediately prior configura-
tions of the members of Cy when (' was formed, the ring sequence number of

(5 is greater than the ring sequence number of . O

Consensus

Theorem 4.2 All of the processors that install a configuration determine that

the members of the configuration have reached consensus on the membership.

Proof. The configuration that a processor installs when it delivers a Config-
uration Change message is based on the ring that the processor installs. If a
processor installs a ring, then that processor was previously in the Commit state
and forwarded the Commit token twice. A processor forwards the Commit token
the first time only if the membership in the token is equal to the difference of
its my_proc_set and my_fail_set; otherwise, it discards the Commit token. When
a processor forwards the Commit token the second time, it determines that all

members of the ring have reached consensus on the membership. O

Termination

Theorem 4.3 If a configuration ceases to exist for any reason, such as proces-
sor failure, network partitioning or token loss, then within a bounded time every
processor of that configuration will install a new configuration or will fail before

doing so.

Proof. If a configuration ceases to exist, then the token has either been lost
or discarded by a processor and each processor in the Operational state either
incurs a Token Loss timeout and shifts to the Gather state, or receives a Join

message and shifts to the Gather state.
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Because of the Consensus and Token Loss timeouts, a processor can spend
only a bounded time in the Gather state without increasing either my_proc_set
or my_fail_set. Because of the Token Loss timeout, a processor can spend only
a bounded time in the Commit state. Because of the Token Loss timeout and
failure-to-receive mechanism, a processor can spend only a bounded time in
the Recover state. Each time a processor returns to the Gather state from the
Commit or Recover state it increases either my_proc_set or my_fail_set before
leaving the Gather state. In an m-processor system, a processor can increase
one or the other of these sets at most 2n — 2 times before it reaches consensus on
a singleton membership with n processors in my_proc_set and n — 1 processors
other than itself in my_fail_set. If a processor reduces the membership to a
singleton set containing only itself, then it will necessarily install the singleton
ring; otherwise, it will install a new ring with a larger membership. In either
case, the processor will install a transitional configuration and a new regular

configuration. O

Configuration Change Consistency

Theorem 4.4 Processors that are members of the same configuration Cy de-
liver the same Initiate Configuration Cy; message to begin the configuration.
Furthermore, if two processors install a configuration Cy directly after Cy, then
the processors deliver the same Configuration Change message to terminate Cy

and initiate Cy,

Proof. If a processor installs configuration €, it delivers a Configuration
Change message containing the Initiate Configuration C'; message and the mem-
bership of ;. Thus, if p and ¢ are both members of (', they have delivered
the same Initiate Configuration €'y message.

It a processor installs configuration (5 directly from C4, it delivers a Con-
figuration Change message containing the Terminate Configuration (; message
and the Initiate Configuration C'; message.

Thus, if p and ¢ both install Cy, they deliver the same Configuration Change

message to terminate C and initiate C5. O
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Ordering
Reliable Delivery

Theorem 4.5 Fach message m has a unique identifier.

Proof. The identifier of a regular message m consists of the ring_id of the regu-
lar configuration in which m was originated, the message sequence number of m
(which is greater than 0), and the conf_id 0. By Theorem 4.1, the configuration
identifiers are unique. By the single-ring ordering protocol, the processor that
originates m increments the seq field of the token and sets the sequence number
of m to this seq; thus, within a configuration the message sequence number of
m is unique. Since the conf_id of a regular message is 0 and the conf_id of a
Configuration Change message is a ring_id which is greater than 0, the conf_id
field distinguishes a regular message from a Configuration Change message.

The identifier of a Configuration Change message that initiates a regular
configuration consists of the ring_id of that configuration, the message sequence
number 0, and the identifier of the old transitional configuration from which
this processor is transitioning as the conf_id field. The identifier of a Config-
uration Change message that initiates a transitional configuration consists of
the ring_id of the preceding regular configuration, the largest message sequence
number on the old ring, and the identifier of the new transitional configuration
to which this processor is transitioning as the conf_id field. If two Configuration
Change messages have the same source ring identifier, then the conf_id is either
the identifier of a transitional configuration preceding the regular configuration
or the identifier of a transitional configuration following the regular configura-
tion. By Theorem 4.1, configuration identifiers are unique. The statement now
follows. O

Theorem 4.6 [f processor p delivers message m, then p delivers m only once.
Moreover, if processor p delivers two different messages, then p delivers one of

those messages strictly before it delivers the other.

Proof. If processor p delivers message m, then p delivers m either in the regular

configuration in which it was originated or in an immediately following transi-
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tional configuration. By Theorem 4.14, within those configurations p delivers

messages in sequence number order. O

Theorem 4.7 A processor p delivers its own messages unless it fails.

Proof. Assume that processor p does not fail. If p is a member of a singleton
configuration and thus of a singleton ring, then it delivers m immediately. Sup-
pose now that p is a member of a configuration and thus of a ring with two or
more members. There are three possibilities: (1) Either the aru in the token
will advance above the sequence number of m and will not be lowered again,
in which case p will deliver m, or (2) the failure-to-receive mechanism will be
invoked, or (3) the membership algorithm will be invoked due to a Token Loss
timeout or reception of a foreign message. In cases (2) and (3), by Theorem
4.3, p will install a new ring and thus a new configuration within a bounded
time. By Theorem 4.12, p will deliver all messages that were originated by the
members of my_deliver_memb and thus of the transitional configuration associ-
ated with the regular configuration it installs; in particular, p will deliver its

own message m. This may involve reduction to a singleton configuration. O

Theorem 4.8 A processor p delivers all of the messages originated in its reg-

ular configuration C' unless a configuration change occurs.

Proof. If no configuration change occurs, then the failure-to-receive mechanism
is not invoked. Let m be a message that has been broadcast by a member of C.
When processor p receives the token, either p has received m or p determines
from the seq field of the token that it did not receive m and thus includes the
sequence number of m in the rtrfield of the token. Because the number of mes-
sages broadcast in C' with sequence numbers at most equal to that of m is finite,
the number of processors in (' is finite, and the failure-to-receive mechanism is
not invoked, each processor in C' will eventually receive and deliver all messages
with sequence numbers at most equal to that of message m, in particular, m
itself. O
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Theorem 4.9 If processor p delivers message m originated in configuration C,
then p ts a member of C' and p has installed C. Moreover, p delivers m in C
or in a transitional configuration between C' and the next reqular configuration

it installs.

Proof. According to the algorithm, processor p delivers message m originated
in configuration C only after it has installed C' (delivered Initiate Configuration
(). Moreover, p delivers m either as a member of the configuration C' in which
m was originated or as a member of the subsequent transitional configuration
that consists of processors in both €' and the next regular configuration that p

installs. O

Theorem 4.10 If processors p and ¢ are both members of consecutive con-
figurations Cy and Cy, then p and q deliver the same set of messages in C
before delivering the Configuration Change message that terminates Cy and ini-
tiates (5.

Proof. There are two cases to consider: (1) Cy is a regular configuration and
(5 is a transitional configuration, and (2) C} is a transitional configuration and
(3 is a regular configuration.

In case (1) processors p and ¢ have exchanged messages and have the same
set of messages for 'y that were rebroadcast on the new ring following C5
with sequence numbers up through my_install_seq. By the recovery algorithm,
p and ¢ both deliver in 4 all messages up to a gap in the sorted message
sequence or a message requiring safe delivery with a sequence number greater
than high_ring_delivered. (A message with sequence number less than or equal
to high_ring_delivered was delivered in Cy by some processor and, thus, can
be delivered in C by this processor.) Processors p and ¢ then deliver the
Configuration Change message that terminates (; and initiates Cs.

In case (2) processors p and ¢ must both have been members of the regular
configuration Cy for which (7 is the transitional configuration between Cy and
(5. By case (1) p and ¢ have the same set of messages for Cy and have delivered
the same subset of those messages before delivering the Configuration Change

message that terminates Cy and initiates C';. By the recovery algorithm, p and



76 CHAPTER 4. THE SINGLE-RING PROTOCOL

g both deliver in (; all remaining messages from Cy up to the first gap in the
sorted message sequence (which were not delivered before the first Configura-
tion Change message) and also all subsequent messages that were originated
in Cy by processors in my_delivery_memb. They then deliver the Configuration

Change message that terminates C; and initiates Cy. O

Delivery in Causal Order for Configuration C

Theorem 4.11 If my precedes my in the Lamport causal order and processor

p delivers both my and mq, then p delivers mq before p delivers my.

Proof. First we show for Lamport’s causal precedence relations that if pro-
cessor ¢ originates message ms before processor ¢ originates message my4 or,
if ¢ receives and delivers m3 before ¢ originates my, then the identifier of
ms is less than the identifier of my in the lexicographical order of identifiers
(srcring-id,seq,confid).

The local variable my_ring_id.seq is recorded to stable storage to ensure that
any message originated by ¢ after ¢ recovers from a failure is ordered after any
message received or originated by ¢ before its failure.

When processor ¢ originates a message, it increments the seq field of the
token and sets the sequence number of the message to this seq, ensuring that
the sequence number of the message is higher than that of any message already
originated or delivered on that ring. The ring_id of the message is the ring
identifier of the ring of which ¢ was a member when it originated the message.
The ring_id.seq of that ring is greater than the ring_id.seq of any previous ring
of which ¢ was a member.

By the transitivity on the lexicograpical order of identifiers, if my precedes
my in the closure of the Lamport causal precedence relations, then the identifier
of my is less than the identifier of ms.

By Theorem 4.17, if the identifier of m; is less than the identifier of my, then
my precedes my in the Global Delivery Order. By Theorem 4.18, if p delivers
both m; and mgy, and if my precedes my in the Global Delivery Order, then p

delivers my before p delivers my. O
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Theorem 4.12 If processor p delivers message my, and my precedes mo in the

causal order for configuration C', then p delivers my before p delivers ms.

Proof. The sequence number of the Initiate Configuration message for each
regular configuration has the sequence number 0 and the regular messages begin
with sequence number 1.

By a simple induction based on message sequence numbers it follows that, for
any message my originated in configuration C' that precedes my in the causal
order, the sequence number of m; is at most equal to the sequence number
of my. Furthermore, if the processor that originated m;y is different from the
processor ¢ that originated my, then the sequence number of my is at most equal
to processor ¢’s my_aru when ¢ originated m,.

Now either processor p delivers message my in configuration C' or p delivers
my in the transitional configuration C5 following C'. Suppose then that pro-
cessor p delivers message my in the transitional configuration Cy following '
and that processor ¢ originated my. By the delivery guarantee, p delivers all
messages with sequence numbers up to the first gap in the message sequence
and also all messages originated by processors in p’s my_deliver_memb with
sequence numbers up through high_ring_delivered. There are two cases to con-
sider: (1) ¢ is a member of p’s my_deliver_memb, and (2) ¢ is not a member of
p’s my_deliver_memb.

(1) Since my precedes my in the causal order and since ¢ originated m., either
q also originated my and thus, by the delivery guarantee, p has delivered m, or
g did not originate my and the sequence number of m; is less than or equal to ¢’s
my_ary when ¢ originated ms. In the latter case, ¢ has the complete sequence
of messages up through m;y. Since p delivered my in C5, the message exchange
was completed and p also has the complete sequence of messages up through
my and thus, by the delivery guarantee, p delivers my before p delivers m,.

(2) Since p delivers ms and ¢ is not a member of p’s my_deliver_memb, the
sequence number of my is less than that of a message in the first gap of the
message sequence. Since the sequence number of my is less than or equal to
that of my, by the delivery guarantee, p delivers my before p delivers m,.

By the algorithm, a processor p delivers a Terminate Configuration mes-

sage with an Initiate Configuration message. After the Initiate Configuration
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message is delivered, p no longer delivers messages in the old configuration so
the Terminate Configuration message is delivered as the last message in the old

configuration. O

Delivery in Agreed Order for Configuration ¢
Theorem 4.13 The Configuration Delivery Order for C s a total order.

Proof. By Theorem 4.5, the messages delivered in (' have unique sequence

numbers which, as a subset of the non-negative integers, form a total order. O

Theorem 4.14 If processor p delivers message my in configuration C' and my
is any message that precedes my in the Delivery Order for Configuration C, then

p delivers mq in C before p delivers ms.

Proof. If m; is any message that precedes my in the Configuration Delivery
Order for C', then the sequence number of m; is at most equal to the sequence
number of my. By the algorithm, every processor in C' delivers messages in
sequence number order and does not deliver message my until it has delivered
all messages in the Configuration Delivery Order for €' with smaller sequence

numbers. O

Delivery in Safe Order for Configuration C

Theorem 4.15 If a processor delivers message m in configuration C' and the
originator of m requested safe delivery, then the processor has determined that
each processor in C has received m, and will deliver m or will fail before in-

stalling a new regular configuration.

Proof. Let ¢ be a processor in (' that does not fail before installing a new
regular configuration. There are two cases to consider.

(1) To deliver m in safe order in regular configuration C, processor p must
forward the token on two consecutive rotations with the aru at least equal to

the sequence number of m. Thus, p determines that, when ¢ forwarded the
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token on the first of those rotations, ¢’s my_aru must have been at least equal
to the sequence number of m. Consequently, p determines that, if the token is
not lost, then ¢ will receive the token on the second of those rotations with the
aru at least equal to the sequence number of m and will then deliver m.

Moreover, p determines that, if the token is lost, then the first gap in the
sequence of messages received by ¢ must correspond to a sequence number
greater than that of m and, thus, that ¢ will deliver m before it installs a
subsequent regular configuration.

(2) To deliver m in safe order in transitional configuration C', processor p
must forward the token on three consecutive rotations with the retrans_flg set
to false and, on the last two of those rotations, with the aru at least equal to
my-install_seq (my_install_seq is the largest new ring sequence number of all old
ring messages retransmitted on the new ring and, thus, is at least equal to the
sequence number of m on the new ring). Processor p then determines that each
processor g forwarded the token on two consecutive rotations with its retrans_flg
set to false and on one rotation with my_aru at least equal to my_install_seq and
my_deliver_memb equal to . Thus, p determines that ¢ has received m and

will deliver m in whichever configuration ¢ subsequently installs. O

Extended Virtual Synchrony

Theorem 4.16 I[f processor p delivers message m in configuration C', then the

requirements for agreed or safe delivery are satisfied.

Proof. This follows from the preceding theorems. O

Theorem 4.17 The Global Delivery Order is a total order.

Proof. By Theorem 4.5, each message has a unique identifier. The identifier
of a regular message m consists of the ring_id of the regular configuration on
which m was originated, the message sequence number for m, and the conf_id
0. The identifier of a Configuration Change message that initiates a regular
configuration consists of the ring_id of that configuration, the message sequence

number 0, and the identifier of the old transitional configuration from which



80 CHAPTER 4. THE SINGLE-RING PROTOCOL

this processor is transitioning as the conf_id field. The identifier of a Configu-
ration Change message that initiates a transitional configuration consists of the
identifier of the preceding regular configuration, the largest message sequence
number on the old ring, and the identifier of the transitional configuration to
which this processor is transitioning as the conf_id field.

The precedes relation of the Global Delivery Order is the lexicographical
order on the set of identifiers (ring-id,seq,conf-id). This lexicographical order is
a total order and, thus, the Global Delivery Order is a total order. O

Theorem 4.18 If processor p delivers messages my and mo, and my precedes

my in the Global Delivery Order, then p delivers my before p delivers ms.

Proof. Let (ring_idy,seq,conf_idy) and (ring_idy,seqy,conf_idy) be the iden-
tifiers of messages my and my, respectively. By Theorem 4.9, a processor only
delivers messages originated in configurations of which it is a member and,
thus, processor p is a member of the configurations with identifiers ring_id; and
ring_idy. Without loss of generality, we assume that (ring_idy,seq,conf_idy) <
(ring-idy,seqz,confidy). The proof is an exhaustive case analysis.

If reng 2dy < ring_ids, then p was a member of the configuration with identi-
fier ring_tdy before it was a member of the configuration with identifier ring_id,,
because the ring sequence number is increased each time a processor shifts to
the Recover state within the membership algorithm. According to the algo-
rithm, processor p delivers all messages that were originated on the ring with
identifier ring_td; before it delivers any message that was originated on the ring
with identifier ring_ad,.

It ring_edy = ring_ids, seqy < seqq, conf_idy = 0, and conf_i1dy = 0, then
my and my are regular messages originated in the regular configuration with
identifier reng_tdy. Since regular messages originated in the same configura-
tion are delivered in sequence number order, processor p delivers my before p
delivers ms.

If ring_edy; = ring_ads, seqr < seqa, conf_id; = 0 and conf_tdy # 0, then my
is a regular message and my is a Configuration Change message that initiates

a transitional configuration following the regular configuration with identifier
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ring-tdy.  This Configuration Change message is delivered after the regular
message with sequence number seqs and, hence, after m;.

If ringed; = ring_idy, seqr < seqa, conf_id; # 0 and conf_idy; = 0, then
my is a Configuration Change message and mgy is a regular message delivered
in the configuration initiated by m;. This Configuration Change message is
delivered before the first regular message delivered in that configuration and,
hence, before ms.

If ring_idy = rengds, sequ = 0, seqa > 0, conf_id; # 0 and conf_tdy # 0,
then my is a Configuration Change message that initiates a regular configu-
ration and my is a Configuration Change message that initiates a transitional
configuration and terminates the regular configuration initiated by my. By the
algorithm, processor p delivers my before p delivers ms.

If ring_idy = rengds, seqy > 0, seqa > 0, conf_id; # 0 and conf_tdy # 0,
then my and my are both Configuration Change messages that initiate different
transitional configurations and terminate the same regular configuration. By
the algorithm, no processor delivers both my and ms.

If ring_idy = ring_idy, seq. = 0, seqy = 0, conf_idy # 0, and con f_idy # 0,
then one of three cases arises: (1) Messages m; and my are Configuration
Change messages that initiate the same regular configuration and terminate
different transitional configurations. By the algorithm, no processor delivers
both mq and my. (2) Messages my and my are Configuration Change messages
that initiate different transitional configurations and terminate the same regular
configuration, and no regular message was delivered in the regular configura-
tion. By the algorithm, no processor is a member of two different transitional
configurations that follow the same regular configuration. By the algorithm, no
processor delivers both my and mq. (3) Message m; is a Configuration Change
message that initiates a regular configuration and my is a Configuration Change
message that initiates a transitional configuration following that regular config-
uration, and no regular message was delivered in the regular configuration. In
this case, con f_id; is the identifier of a transitional configuration that precedes
the regular configuration with identifier ring_id;, and con f_id; is the identifier
of a transitional configuration that follows that regular configuration. By the

algorithm, processor p delivers my before p delivers ms.
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In any case, processor p delivers my before p delivers my. The Global Deliv-

ery Order is, thus, the set of messages delivered by all of the processors.O

4.6 Summary

The single-ring protocol provides fast reliable ordered delivery of messages in
a broadcast domain where processors may fail and the network may become
partitioned. A token circulating around a logical ring imposed on the broadcast
domain is used to recover lost messages and to order messages on the ring. The
protocol provides delivery of messages in agreed and safe order.

The membership algorithm handles processor failure and recovery, network
partitioning and remerging, and loss of all copies of the token. The concept
of extended virtual synchrony has been introduced to ensure consistent actions
by processors that fail and are repaired with their stable storage intact and
in networks that partition and remerge. A recovery algorithm that maintains
extended virtual synchrony during recovery after a failure has been provided.

The flow-control algorithm of Totem avoids message loss due to overflow of
the input buffers and provides substantially higher throughput than existing
total ordering protocols. With the high performance of the single-ring protocol,
there is no need to provide a weaker message ordering service, such as partially
ordered causal delivery, because totally ordered agreed delivery can be provided
at no greater cost. Moreover, partially ordered causal delivery may lead to
inconsistencies in different components of a partitioned network.

Although the single-ring protocol was originally designed to be executed by
processors in a local-area network, it can be used on top of any communication
protocol that provides unreliable multicast or broadcast communication; a single
broadcast domain is not necessarily confined to a local-area network. The single-
ring protocol can also be executed by a subset of the processors in a local-area

network.



Chapter 5

The Multiple-Ring Protocol

The multiple-ring protocol provides agreed and safe delivery of messages across
broadcast domains interconnected by gateways, as well as membership and
topology maintenance. It uses the single-ring total ordering algorithm to provide
reliable ordered delivery within each broadcast domain; the gateways forward
messages between broadcast domains. Timestamps in messages are used to
create a global ordering of messages that respects causality and is consistent
across the entire network. The timestamp is written periodically to stable stor-
age. When a processor comes up, it reads the value of the timestamp from
stable storage and increments that value.

Delivery of messages in total order across the network is relatively straight-
forward if topology changes never occur. Intuitively, a topology is a set of rings
(configurations) such that there is a communication path between any two pro-
cessors that are members of rings in this set. A topology change is inevitable
when a failure, restart, partition or remerge event occurs. The gateways exe-
cuting the multiple-ring membership algorithm use the Configuration Change
messages from the single-ring membership algorithm to identify changes to net-
work topology information. Network Topology messages are used to inform the
gateways and processors on a ring of the network topology. Topology Change
messages are sent by a gateway to notify the other gateways and processors in
the network of a change in the topology due to a configuration change. Topology

Change messages are delivered to the application.
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The gateways perform the same functions as the processors; in particular,
they can send messages from, and deliver messages to, the application. Besides
forwarding messages, each gateway maintains the current view of the network
topology. An early version of the protocol is described in [1].

In this chapter we use the term ring to mean either regular configuration
or transitional configuration, and configuration change to mean a change to
either a regular configuration (ring) or to a transitional configuration within
the single-ring protocol. The term configuration used in the statement of the
requirements for the protocol in Chapter 3 should be interpreted as, and is
replaced by, topology in this chapter. We use the term processor to mean either
processor or gateway unless explicitly stated otherwise. In the multiple-ring
protocol messages are ordered by timestamp, source ring identifier, message
type and configuration identifier, but we will often simply say that they are

ordered by timestamp.

5.1 The Total Ordering Algorithm

First we describe the operation of the Totem multiple-ring total ordering algo-
rithm without considering topology changes. The difficult task of dealing with
topology changes is considered in Section 5.2. Pseudocode for the total ordering

algorithm is included in Figures 5.1, 5.3 and 5.4.

The Data Structures

Local Data Structures
Each processor and gateway maintains the following data structures to track

the messages that are received and to implement ordering:

For each ring in the network,
o ring_itd: The unique ring identifier generated by the single-ring pro-
tocol.

o recv_msgs: A list of received messages that were originated by a

processor on the ring and that have not yet been delivered to the
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application. This list is sorted in increasing order by timestamp and

message type.

o max_timestamp: The highest timestamp of a message received that

was originated on the ring.

o min_timestamp: The lowest timestamp of a message in recv_msgs for
the ring. If there are no messages in recv_msgs, then min_timestamp

equals max_timestamp.

The ring_table contains an entry for each ring (regular and transitional config-

uration) in the network with the above information.

For each directly attached ring

o my_guar_vector: The length of my_guar_vector is the number of rings
in the network. Each vector component contains the value of the

highest timestamp of a message received for the corresponding ring.
For the entire network

o cand_msgs: A sorted list containing the lowest entry in recv_msgs for
each ring. This list is kept in increasing order sorted by (timestamp,
source ring identifier, message type, conf). If reco_msgs for a ring is
empty, then the entry in cand_msgs for the ring is (min_timestamp,

ring identifier, regular, 0).

o guarantee: An array with rows that are the guarantee vectors re-
ceived from the gateways on the other rings, one row for each ring
in the network. Each column of the array corresponds to messages

originated on a particular ring.
Maintained only by the gateways

o gway_id: The identifier of this gateway. The gway_id is chosen de-
terministically from the two single-ring processor identifiers for this

gateway.
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Added to the single-ring protocol

o my_timestamp: The highest message timestamp known to this pro-

CEessor.

o my_stable_timestamp: The value of the timestamp last written to

stable storage.

o timestamp_interval: A constant that determines how often the times-

tamp is written to stable storage.

o my_future_ring_seq: The highest ring sequence number known to this

Processor.

The values of my_stable_timestamp and my_future_ring_seq, and of the timestamp
and ring sequence number in stable storage are all initially 0. The value of the
constant timestamp_interval is determined as a configuration parameter.

When a processor comes up either initially or after a failure, it is a member
of one ring for each interface to a broadcast domain. The number of compo-
nents of my_guar_vector is initialized to the number of interfaces to broadcast
domains; each component has an initial timestamp of —1. The rows of the guar-
antee array correspond to the my_guar_vectors for the directly attached rings.
My_timestamp and the min_timestamp and maz_timestamp for each ring are
set to zero; recv_msgs for each ring is empty. The processor reads the value
of my_stable_timestamp from stable storage. It then sets my_stable_timestamp
to my_stable_timestamp + timestamp_interval. The processor writes the value
of my_stable_timestamp to stable storage and waits for the completion of that
write. It then sets my_timestamp to the value of my_stable_timestamp.

On receipt of a Configuration Change or Topology Change message intro-
ducing a new ring, a processor adds the data structure for the new ring to the
ring-table. The ring_id for the new ring is obtained from the Configuration
Change or Topology Change message. The max_timestamp and min_timestamp
are set to the timestamp in the Configuration Change or Topology Change mes-
sage, recv_msgs is set to empty, and a new entry corresponding to this ring is

added to cand_msgs.
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Regular Message
In addition to the single-ring protocol header, each regular message has a

multiple-ring protocol header containing the following fields:
o src_sender_id: The identifier of the processor that originated the message.
o timestamp: The message timestamp.
o src_ring_id: The identifier of the ring on which the message was originated.
o (ype: Regular.
o confid: 0

The last four fields constitute the identifier of the message. The src_sender_id,
timestamp, and src_ring_id fields are set by the single-ring protocol on trans-
mission of the message at the site that generated the message. These fields are
not changed when a message is forwarded or retransmitted. The sender_id, seq
and ring_id in the single-ring protocol header are reset each time the message

is forwarded to a new ring.

Guarantee Vector Message
In addition to the fields in a regular message, each Guarantee Vector message

contains the following field:

o guar_vector: The current my_guar_vector for a ring containing the gateway

that originated the Guarantee Vector message.

The src_ring_id field of the Guarantee Vector message is set to the ring identifier
of the ring corresponding to my_guar_vector.

Guarantee Vector messages are broadcast periodically by the gateways to the
other gateways and processors in the network. The timestamp of a Guarantee
Vector message assures a recipient that it will not receive a message with a
lower timestamp from the source ring of the Guarantee Vector message; this
allows messages to be delivered in agreed order. The contents of a Guarantee
Vector message indicate which messages have been received from other rings

by the gateways and processors on the source ring of the Guarantee Vector
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if my_guar_vector[msg source ring] < msg.timestamp then
my _guar_vector[msg source ring| := msg.timestamp
endif
if msg.timestamp <= msg source ring.max_timestamp then
discard message
else
if amgateway then
forward message
endif
source ring.max_timestamp := msg.timestamp
add message to recv_msgs of source ring
if recv_msgs of msg source ring contains only one message then
source ring.min_timestamp := msg.timestamp
update entry for source ring in cand_msgs
endif
call deliver_msgs

endif

Figure 5.1: Algorithm executed by a processor on receipt of a regular message.

message; this allows messages to be delivered in safe order. Guarantee Vector
messages are forwarded throughout the network, but they are not delivered to

the application.

The Algorithm

The multiple-ring protocol relies on the single-ring total ordering algorithm to
provide reliable ordered delivery of messages within a broadcast domain. Mes-
sage sequence numbers remain local to a ring and cannot be used for ordering
across the entire network; instead, messages are ordered by timestamp.

We first describe the mechanisms added to the single-ring protocol to handle
the timestamping of messages. In addition to the fields described in Chapter 4,
the Regular and Commit tokens contain a timestamp field. When a new ring is
being formed, the timestamp field in the Commit token is used to determine the
highest my_timestamp of any of the processors on the ring. On the first rotation
of the Commit token, a processor compares my_timestamp to the timestamp
field in the Commit token and sets the timestamp field to the larger of the two

values.
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The timestamp field in the regular token ensures that the timestamp or-
der on messages originated on a ring obeys the causal order for the topology.
When a processor receives a message or the token, it sets my_timestamp to the
larger of my_timestamp and the timestamp field in the message or token. For
each new message it broadcasts, a processor increments my_timestamp and sets
the timestamp field in the message to my_timestamp. Before forwarding the
token, a processor sets the timestamp field in the token to my_timestamp. The
timestamp field in the token ensures strictly increasing timestamps for messages
generated on the ring. If any of the above actions increments my_timestamp to
a value greater than or equal to my_stable_timestamp plus timestamp_interval,
then the processor sets my_stable_timestamp to my_timestamp, and writes
my_stable_timestamp to stable storage before broadcasting the message or for-
warding the token.

Each time a gateway forwards a message onto another ring, it sets
my_timestamp to the larger of my_timestamp and the timestamp in the mes-
sage. A forwarded or retransmitted message retains the timestamp it was given
when it was originated. This ensures that the next new message broadcast by
a gateway has a higher timestamp than any message previously forwarded by
the gateway.

Each time a processor or gateway receives a forwarded message, it sets
my_future_ring_seq to the larger of my_future_ring_seq and the src_ring_id.seq
of the forwarded message. If my_future_ring_seq has changed, then it is written
to stable storage before the message is forwarded. When a new ring (regu-
lar configuration) is being formed, the ring_id.seq of the new ring is four plus
the largest of the my_future_ring_seq for any of the processors on the new ring.
(The ring sequence of the ring_id of the transitional configuration is two plus the
largest of the my_future_ring_seq for any of the processors on the new ring. One
or three plus the largest of the my_future_ring_seq is the ring sequence number
of a transitional configuration consisting of only the processor itself if such a
configuration must be used to provide safe delivery of messages.) When the
processor shifts to the Recover state and writes the my_ring_id.seq to stable

storage, it also sets my_future_ring_seq to my_ring_id.seq. My_future_ring_seq en-
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Application

MRP

/
SRP l\/ SRP

. =

Broadcast domain 1 Broadcast domain 2

Figure 5.2: The messages broadcast on a directly attached ring by a gate-
way are messages that were generated by an application process executing
at the gateway or messages that were delivered by the Totem Single-Ring
Protocol (SRP) to the Totem Multiple-Ring Protocol (MRP) and were
forwarded by a gateway.

sures that the causality relations are maintained when two messages originated
on different rings have the same timestamp.

A processor or gateway executing the single-ring protocol stores messages
received from the application in a FIFO buffer until it can broadcast them on the
local ring. A gateway also places messages forwarded from the other single-ring
protocol executing at the gateway in the buffer, as shown in Figure 5.2. When a
message that was generated by the application at this processor is removed from
this buffer, the message’s timestamp is set to my_timestamp and my_timestamp

is incremented. The message is then broadcast on the far-side ring.

Delivery of Messages in Agreed Order

The key to agreed ordering in the multiple-ring protocol is the fact that messages
originated on a ring are forwarded through the network in order. Messages
broadcast on a ring are delivered by the single-ring protocol to the multiple-
ring protocol executing at a gateway or processor in sequence number order.
Messages are forwarded onto a ring by a gateway in the order in which they
are received from the single-ring protocol. A forwarded message is given a new

sequence number, but retains its old timestamp, for each new ring onto which it
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if recv_msgs of low entry in cand_msgs not empty then
cur_msg := the low message in recv_msgs of the
low entry in cand_msgs
if cur_msg.type = agreed then
deliver cur_msg
else if cur_msg.type = safe then
if for all i guarantee[i][source lan] >= cur_msg.timestamp then
deliver cur_msg
endif
endif
call deliver_msgs

endif

Figure 5.3: Deliver_ msgs routine executed by processors and gateways to

deliver a message.

is forwarded. On a new ring, messages are delivered to the multiple-ring protocol
executing at a processor in sequence number order for that ring. Messages are
then delivered to the application by a processor executing the multiple-ring
protocol in the order of (timestamp, src_ring_id, type, conf.id).

Since the messages generated on any one ring are forwarded in order through
the network, each gateway and processor can record a maz_timestamp in
ring_table for each ring; all messages from that ring with lower timestamps
must already have been received. If a gateway receives a regular message with a
timestamp less than the maz_timestamp of the source ring, it discards the mes-
sage as a redundant message. This mechanism allows a processor to identify
redundant copies of messages forwarded by multiple gateways.

To deliver messages in agreed order, a processor first determines the low-
est entry in cand_msgs. Messages with the same timestamp are ordered by
sre_ring_id and message type. If the lowest entry in cand_msgs corresponds to
a message for which agreed delivery was requested, the message is delivered.
It the recv_msgs list corresponding to the lowest entry in cand_msgs is empty,
no further messages can be ordered until a message from that ring is received,
because the next message from that ring may have a lower timestamp than the

messages that have been received from the other rings. A processor can deliver
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for all i do guarantee[msg.source]i] :=
MAX( guarantee[msg.source][i], msg.guar_vector[i] )
endfor

Figure 5.4: Algorithm executed by processors and gateways on receipt of

a Guarantee Vector message.

a message in agreed order only after it has delivered all other messages with
lower timestamps.

Delivery of messages in agreed order across a network requires a processor
to delay delivery of a message until all preceding messages in the total order
have been delivered. There may be significant delays in forwarding messages

through the network, but such delays are unavoidable.

Delivery of Messages in Safe Order

Delivery of a message in safe order requires information about whether the
message has been received by all of the other processors in the network. A
message to be delivered in safe order is originated with a request for safe delivery
in its header. When a processor executing the single-ring protocol delivers a
message in safe order, all of the other processors on that local ring must have
received the message.

A processor executing the multiple-ring protocol uses my_guar_vector to
record, for each directly attached ring, the messages that have been received
from the single-ring protocol. A component of my_guar_vector corresponding to
a particular ring is greater than or equal to the timestamp of a safe message
only if that message is safe on the ring (has been received by every processor
on the ring).

Gateways periodically create and broadcast Guarantee Vector messages.
When a processor executing the multiple-ring protocol receives a Guarantee
Vector message, it compares the guar_vector in the message with the appropri-
ate row of its local guarantee array and changes a component of the row to the

corresponding guar_vector component if the vector component contains a higher
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timestamp. The pseudocode executed by a processor or gateway on receipt of
a Guarantee Vector message is given in Figure 5.4.

To deliver a message in safe order, a processor executing the multiple-ring
protocol must wait until all entries in the column of the guarantee array, corre-
sponding to the ring on which the message was generated, contain timestamps
greater than or equal to the timestamp of the message. This guarantees that
the message has been received by each processor in the network, and will be
delivered by that processor unless it fails. The array is checked each time a
message for which safe delivery was requested is the lowest entry in cand_msgs.
Gathering the additional knowledge required for delivery of a message in safe

order may delay delivery of messages with higher timestamps.

Example

The message ordering mechanisms of the multiple-ring protocol provide consis-
tent agreed and safe message ordering across an entire network. A processor
delivers a message in agreed order only after it has delivered all messages that
precede it in the total order. As an example, consider the network shown in
Figure 5.5, where the rings are represented by circles and the processors and
gateways by squares. A processor p on ring A is ordering messages from rings
A, B and C. If processor p has the data structures shown, p can deliver the
message with timestamp 7 from ring A, the message with timestamp 8 from
ring C, the message with timestamp 9 from ring B, and the messages with
timestamp 10 from rings B and (' in agreed order.

After these messages have been delivered, the min_timestamp and
maz_timestamp at processor p for ring C' will be set to 11 until new messages
have been received from C'. The lowest entry in cand_msgs is the entry for ring
C' with timestamp 11. The undelivered message with lowest timestamp is now
the message from ring B with timestamp 13, but no further messages can be
delivered until the next message from ring C' is received. Otherwise, there may
be a message from C with a timestamp 12 that has not yet been received.

If the message received from ring A with timestamp 7 contains a request
for safe delivery, then processor p can deliver that message as safe since the

guarantee array column for A has all entries at least equal to 7 which indicates
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Data structures at processor p

A:Recv_msgs  =7,14,15,26,29
Max_timestamp = 29
Min_timestamp = 7

B: Recv_msgs =9,10,13,15
Max_timestamp = 17
Min_timestamp =9

C:Recv_msgs  =8,10 Al BIC

Max_timestamp = 11

Minimeam=a A2 171
C/l 7,910

guarantee array at p
Figure 5.5: An example with rings A, B and C indicated by circles. The
processors and gateways are drawn as squares. The data structures at
processor p are also shown. A row of the guarantee array corresponds to

the guarantee vector received from a gateway on the ring.

that the message is safe on all of the rings in the current topology. The same
is true for the message from ring €' with timestamp 8 and the message from
ring B with timestamp 9. The message from ring B with timestamp 10 cannot,
however, yet be delivered as safe since the guarantee vector from C' reports

receipt of messages from ring B only up to timestamp 9.

5.2 The Topology Maintenance Algorithm

The message ordering algorithm described above depends on knowledge of the
network topology. If messages are originated on a ring of which a processor
p 1s unaware, processor p must be informed of the new ring and must wait
for such messages. Otherwise, p will prematurely deliver messages with higher
timestamps. Similarly, if a ring becomes inaccessible and processor p is not
informed, p must wait for a message from that ring and message ordering must
stop until p deletes the ring.

It is very important that a topology change has a consistent effect throughout
the set of processors that were previously able to, and can still, communicate
with each other. Even though the various processors learn of the topology

change at different times, they must agree on the same logical time for the
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change, and must agree on the sets of messages to be delivered before and
after the topology change. Only with care is it possible to maintain consistent
network-wide message delivery.

In addition, topology information must be exchanged between merged com-
ponents of the network to ensure that the processors and gateways proceed
with a consistent view of the network after the components have merged. This
exchange of topology information is handled by the gateways through an addi-

tional round of message passing.

The Data Structures

The data structures and message types given below facilitate the maintenance

of topology information.

Local Data Structures

Each processor and gateway maintains the local data structure:

o neighbors: The neighboring gateways on each of the rings to which this
processor is directly attached. Each neighbor has associated with it a
begin_timestamp, which is the timestamp of the Configuration Change

message that first identified the gateway as a neighbor.
Each gateway also maintains the local data structure:

o topology: This gateway’s view of the current topology of the network.
Topology is maintained as a graph with each ring represented as a node and
each gateway as an edge. Unreachable rings and gateways are not included
in topology. Each edge has a timestamp associated with it indicating when
it will be deleted from the graph based on the Configuration Change
messages the gateway has received. This timestamp is initialized to —1

(infinity) when an edge is first added to topology.

The topology identifier is the lexicographically ordered list of ring identi-
fiers of the rings that comprise the topology. Since ring identifiers are unique,

topology identifiers are also unique.
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Message Types

Configuration Change Message

A Configuration Change message is generated by the single-ring protocol to
signal a change in the membership of a ring. The Configuration Change message
informs processors and gateways of the existence of a new ring, and is forwarded
by the gateway that generated it after the gateway has forwarded all of the
messages from the old ring. The Configuration Change message is delivered
by both the single-ring and multiple-ring protocols as an agreed message, and

contains the following fields:

o timestamp: The timestamp in the Commit token on its second rotation in
the single-ring membership algorithm, if the Configuration Change mes-
sage initiates a regular configuration, and the highest timestamp of a mes-
sage delivered in the preceding regular configuration if the Configuration

Change message initiates a transitional configuration
e src_ring_id: The identifier of the new ring (regular or transitional).
o (ype: Configuration Change.
e conf-id: The identifier of the old ring (regular or transitional).

o memb_list: A list of the processor identifiers of the membership of the new

configuration.

o gateways: A vector of booleans containing a position for each processor in
memb_list. A vector component contains a one if the associated processor
is a gateway, and a zero otherwise. This information is gathered in the

Commit token of the single-ring membership algorithm.

o gateway_ids: A list containing the gway_id of each gateway on the new
ring. This information is gathered in the Commit token of the single-ring

membership algorithm.

o guar_vector: The guarantee vector at the processor or gateway that gener-
ated the Configuration Change message for the ring that experienced the

configuration change.
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The first four fields constitute the identifier of the Configuration Change

message.

Network Topology Message

A Network Topology message is sent by a gateway on a directly attached ring
that experienced a configuration change when a Configuration Change message
is delivered at the gateway. The Network Topology message is not delivered to
the application or forwarded by the multiple-ring protocol; it informs the other
gateways and processors on the ring of the part of the network connected to the
ring by this gateway. The Network Topology message contains the following
fields:

o timestamp: The timestamp of the associated Configuration Change

message.

o src_sender_itd: The processor identifier on this ring of the gateway that

originated the message.
o gateway_id: The identifier of the gateway that originated the message.

o topology: The gateway’s current view of the network topology outside the

ring that experienced the configuration change.

Note that a gateway deterministically chooses one of two ring identifiers as its
gateway_id, and that its identifier src_sender_id on the ring that experienced the

configuration change is not necessarily the same as gateway_id.

Topology Change Message

A Topology Change message is sent by a gateway to notify the other gateways
and processors in the network of a change in the topology due to a configuration
change. The Topology Change message is forwarded and delivered in order along
with the regular messages. A Topology Change message is also created and
delivered locally by a processor (not a gateway) when it receives a Configuration
Change message for a directly attached ring. The local view of the topology is
updated when the Topology Change message is delivered to the application. A
Topology Change message is sent with a request for agreed delivery and contains

the following fields:
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o timestamp: The timestamp of the corresponding Configuration Change
message if the Topology Change message adds one or more rings. Other-
wise, it is the max_timestamp of the ring to be deleted (which, in the case
that no message has been received from the ring, will be the timestamp

of the Topology Change message that introduced the ring).

o src_ring-id: The sre_ring_id of the corresponding Configuration Change
message, or the ring_id of the ring to be deleted if the Topology Change
message contains a ring deletion only and a message has been received from
that ring, or the sre_ring_id of the preceding Topology Change message if
the topology change consists of a ring deletion only and no message has

been received from the ring to be deleted.

o type: Topology Change, or Topology Change None if the topology change
consists of a ring deletion only and no message has been received from the

ring to be deleted.

o conf_id: the conf-id of the corresponding Configuration Change message,
or the ring_id of the ring to be deleted if the topology change consists

of a ring deletion only and no message was received from the ring to be

deleted.
o new_rings: The identifiers of added rings, if any.
o del_rings: The identifiers of deleted rings, if any.

o new_gateways: A list of the gateways added to the topology, if any.

The identifier of the Topology Change message consists of the first four fields
above.

Messages are delivered by a processor executing the multiple-ring protocol in
the global total order defined by the lexicographical order on the set of ordered
4-tuples (timestamp, src_ring-id, type, conf-id). The timestamps are arranged
in increasing order, the ring identifiers (ring_seq, rep_id) are lexicographically
ordered, and the message types are ordered by the relation: Regular < Config-
uration Change < Topology Change < Topology Change None.
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The Events of the Topology Maintenance Algorithm

There are five topology events, namely:

o Receipt of a Configuration Change message. The Configuration Change
message is created by the single-ring membership algorithm when a new
ring is formed. This message is not broadcast on the local ring but is
generated locally and is propagated by the multiple-ring protocol through
the rest of the network. On receipt of a Configuration Change message,
a data structure for the new ring is added to the ring_table. It a gateway
receives a Configuration Change message that indicates that a ring has
become disconnected but no Configuration Change message is pending for

the ring, the gateway sends a Topology Change message deleting the ring.

o Delivery of a Configuration Change message. A gateway directly attached
to a ring that experienced a configuration change exchanges topology in-
formation with the other gateways and processors on that ring by sending
a Network Topology message on that ring. The Network Topology mes-
sage describes the component of the network connected to the ring by the
gateway, based on its current topology and on Configuration Change mes-
sages. Before sending a Network Topology message, a gateway waits until
the Configuration Change message is the next message to be delivered, to

ensure that the local topology information is up-to-date.

e Receipt of a Network Topology message. When a gateway has received
Network Topology messages from all of the gateways on the directly at-
tached ring that experienced the configuration change, it sends a Topol-
ogy Change message. The Topology Change message serves to inform the
other processors and gateways in the network of the change in the network

topology based on the gateway’s local topology information.

o Receipt of a Topology Change message. When a processor or gateway
receives a Topology Change message, it accepts the message and adds it
to recv_msgs for the sre_ring_id, unless it has already placed a Topology

Change message with the same identifier in recv_msgs, in which case it
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discards the Topology Change message. If a gateway accepts the Topology

Change message, it forwards it to the rest of the network.

o Delivery of a Topology Change message. The local view of the network
topology is updated when the Topology Change message is delivered. The
Topology Change messages are delivered in order along with the regular
messages and, thus, are delivered by the processors and gateways in a
consistent total order. Consequently, the gateways update their topology

information in the same total order at all sites.

Handling a Single Configuration Change

First, we describe the steps taken by a processor to handle a single Config-
uration Change message without considering further topology changes during
execution of the multiple-ring membership algorithm. Receipt of a Configura-
tion Change message generated by the single-ring protocol signals a topology
change. Since the gateways maintain the current view of the network topology,
they are responsible for determination of the changes to the topology caused
by the configuration change and dissemination of this information to the other
gateways and processors in the network. A gateway determines the new topol-
ogy by exchanging topology information with the other gateways on the ring
and combining the information to determine the new topology.

On receipt of a Configuration Change message for a directly attached ring,

a gateway takes the following steps:

1. Copy the current old ring my_guar_vector into the Configuration Change

message guar_vector. Forward the Configuration Change message.

2. Add a data structure for the new ring to the ring_table. This data structure
provides a location to store messages originated on the new ring, including

this Configuration Change message.
3. Add a row for the new ring to the guarantee array.

4. Buffer messages received from new gateways on the ring until a Topology

Change message adding the new ring has been ordered.
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10.

11.

12.

Until the Configuration Change message is the lowest entry in cand_msgs,
deliver messages and, if recv_msgs of the ring with the lowest entry in
cand_msgs is empty, then execute step 6. If the lowest entry in cand_msgs
corresponds to a safe message that has not been guaranteed by one of the
rings, then proceed to step 7. If the Configuration Change message is the

lowest entry in cand_msgs, go to step 8.

Determine if the ring with the lowest entry in cand_msgs has become
disconnected. If so, create and broadcast a Topology Change message
indicating the deletion of the ring. Otherwise, wait for a message from

the ring. Return to step 5.

Determine if the rings, that have not guaranteed the message, have become
disconnected. If so, create and broadcast a Transitional Topology Change
message (defined later) indicating the topology changes required to deliver
the message. Otherwise, wait for a guarantee message from the ring.

Return to step 5.
Construct a Network Topology message and broadcast it on the new ring.

Gather Network Topology messages from the other gateways on the new

ring.

Combine Network Topology messages to determine changes to the current
topology and broadcast a Topology Change message indicating changes
to the local topology.

Update topology and ring_table.

Deliver the Configuration Change message and the associated Topology

Change message.

On receipt of a Configuration Change message for a directly attached ring,

a processor that is not a gateway takes the following steps:

1.

If there is no gateway that transitioned from the old ring to the new ring,
create Topology Change messages deleting the data structures for each

ring from the ring_table, as of the highest entry in recv_msgs for the ring.
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2. Steps 2-4 above.

3. Deliver messages until the Configuration Change message is the lowest

entry in cand_msgs.

4. Combine Network Topology messages to determine the rings in the current
topology and create a Topology Change message indicating ring additions

and deletions.
5. Update ring_table.

6. Deliver the Configuration Change message and the associated Topology

Change message.

On receipt of a Configuration Change message for a ring that is not directly

attached, a processor takes the following steps:

1. Add a data structure for the new ring to the ring_table.
2. Add a row for the new ring to the guarantee array.

3. Continue delivering messages until the Configuration Change message is
the lowest entry in cand_msgs and the accompanying Topology Change

message has been received.

4. Deliver the Configuration Change message and the Topology Change mes-

sage.

The processors and gateways directly attached to a ring are responsible
for determining topology change information associated with a configuration
change. The gateways are also responsible for disseminating the topology change
information associated with the configuration change. Pseudocode for handling
the messages associated with a configuration change is given in Figures 5.6,
5.7, 5.8, 5.9 and 5.10. The actions taken by the processors and gateways when
a multiple-ring protocol topology event occurs are described below in greater
detail.
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if new ring data structure already exists in ring_table then
discard message
return
endif
if amgateway then
forward Configuration Change message
endif
add new ring data structure
recv_msgs := empty list
max_timestamp := msg.timestamp
min_timestamp := msg.timestamp
add message to new ring recv_msgs list
add row for new ring to guarantee array
if msg.srcring_id = directly connected ring ring_id then
update neighbor gateways list for new ring
mark all new gateways as starting at Configuration Change msg.timestamp
copy my _guar_vector for old ring into msg.guar_vector
if amgateway then
for each gway_id on new ring do
if gway_d is in current topology then
mark gateway for deletion at msg.timestamp
endif
endfor
endif
endif

Update guarantee array row for old ring with msg.guar_vector

Figure 5.6: Algorithm executed by a processor or a gateway on receipt

of a Configuration Change message.
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Receipt of a Configuration Change Message

A Configuration Change message serves to inform the processors and gateways
in the network of the new ring identifier and to flush messages from the old
ring. The Configuration Change message precedes all messages forwarded from
the new ring. In essence, the Configuration Change message places a marker in
the message order for the topology change.

If the Configuration Change message is for a directly attached ring, then
the processor (or gateway) copies its my_guar_vector for the old_ring_id into
the guar_vector field in the Configuration Change message. On receipt of a
Configuration Change message from any ring, a processor adds a data structure
for the new ring to the ring_table with a min_timestamp and maz_timestamp
equal to the timestamp of the Configuration Change message. The processor
then places the Configuration Change message in recv_msgs for the new ring.

The processor also advances the max_timestamp for the old_ring_id to the
timestamp of the Configuration Change message. The processor adds a row to
the guarantee array for the new ring and sets all entries in the row equal to the
timestamp of the Configuration Change message. It also updates the row of
the guarantee array associated with the old ring using guar_vector and updates
neighbors according to the gway_ids in the Configuration Change message.

A gateway also updates the edges in its local topology. For each gateway
identifier in gway_ids, the gateway marks the current topology edge for that
gateway with the timestamp of the Configuration Change message. The edge is
known to connect two different rings as of the timestamp of the Configuration
Change message. The timestamps on edges are used to determine the rings to
delete from the topology to allow delivery of the Configuration Change message.

The Configuration Change message is not used to add the new ring to, or
to delete the old ring from, the gateway topology. To maintain extended virtual
synchrony, the topology change needs to occur at the same logical time at all
gateways and processors that experience the change. To accomplish this, a
gateway delays updating the topology until the Configuration Change message
is the lowest entry in cand_msgs.

Since messages may be delayed by the forwarding operation, the

maz_timestamp for a ring may be lower than the timestamp of the Configu-
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ration Change message. This will prevent the Configuration Change message
from being delivered until the ring is deleted.

A gateway can send a Topology Change message to delete a ring when it has
received a Configuration Change message that deletes the final connection to the
ring and all of the messages in recv_msgs for that ring have been delivered. The
ring can be deleted because messages are forwarded in order, and all messages
that will be forwarded from the ring were forwarded ahead of the Configuration
Change message that indicated the disconnection of the ring.

A processor (not a gateway), that receives a Configuration Change message
for a directly attached ring indicating that there are no gateways that were on
both the old ring and new ring, creates and delivers locally Topology Change
messages to delete all rings in the ring_table, except for the old ring, before
adding the new ring to the ring_table.

A Topology Change message to delete a ring has the same src_ring_id as
that of the ring to be deleted, a timestamp equal to the maz_timestamp for that
ring, and contents indicating that the ring is to be deleted. The pseudocode
executed by a processor on receipt of a Configuration Change message is given

in Figure 5.6.

Delivery of a Configuration Change Message

When a Configuration Change message is the next message to be delivered (the
lowest entry in cand_msgs), each gateway on the ring that experienced the con-
figuration change sends a Network Topology message on that ring. A gateway
waits to send the Network Topology message until the Configuration Change
message is the next message to be delivered to ensure that its local topology
has been updated to the timestamp of the Configuration Change message. The
Network Topology messages are particularly necessary when there are gateways
or processors that are added to the ring. They serve to inform the gateways
and processors on the ring of the current topology connected to the ring by each
gateway.

Before building the Network Topology message, the gateway deletes the
gateway identifiers listed in gway_ids (including its own identifier) from topology.

The gateways are deleted from topology because they are no longer connected
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if msg.srcring_id # directly connected ring ring_-id then
wait for Topology Change message
else
if amgateway then
for each gway_id on new ring do
if gway_id is in topology then
delete gateway from topology
endif
endfor
send Network Topology message
endif
wait for Network Topology messages from all gateways on new ring
combine Network Topology messages to determine new topology
create Topology Change message
if amgateway then
send Topology Change message
endif
endif
deliver Configuration Change and Topology Change messages

Figure 5.7: Algorithm executed by a processor or a gateway when a

Configuration Change message is the lowest entry in cand_msgs.

to their old ring and, if they were lett in topology, they would cause problems in
determining the currently connected topology to report in the Network Topol-
ogy message. The gateway determines the connected topology and sends this
information in a Network Topology message on the ring that experienced the

configuration change.

A processor or gateway delays delivery of a Configuration Change message
until it has received an associated Topology Change message with the same
timestamp and source ring, or Network Topology messages from all of the gate-
ways on the ring with the same timestamp as the Configuration Change message,
in which case it generates a Topology Change message. (Note that we are as-
suming that no further configuration changes occur.) The pseudocode executed

by a processor to deliver a Configuration Change message is given in Figure 5.7.



5.2, THE TOPOLOGY MAINTENANCE ALGORITHM 107

store as neighbor topology
if have Network Topology msgs from all gateways on new ring then
combine neighbor topologies to determine rings in network
add structures for new rings
add new rings to Topology Change message
list deleted rings in Topology Change message del_rings
discard neighbor topologies
if amgateway then
list added gateways in Topology Change message
send Topology Change message
endif
add Topology Change message to recv_msgs of new ring

endif

Figure 5.8: Algorithm executed on receipt of a Network Topology mes-

sage by a processor or a gateway.

Receipt of a Network Topology Message

The gateways and processors on a ring that experienced a configuration change
are responsible for determining the topology changes associated with that con-
figuration change. To accomplish this, each gateway and processor gathers the
Network Topology messages from the gateways listed in gway_ids of the Config-
uration Change message.

When a gateway has received Network Topology messages from all of the
gateways on the new ring, it merges the topology in the messages into its own
topology. For each ring or gateway added to topology, it records that ring or
gateway in the fields new_rings or new_gateways of a Topology Change message.
The gateway also records any disconnected rings in the field del_rings of the
Topology Change message. When all ring and gateway additions and deletions
are complete, the gateway sends a Topology Change message indicating the
changes with timestamp equal to the timestamp of the Configuration Change
message (and, therefore, also of the Network Topology messages) and sre_ring_id
equal to the new ring. The Topology Change message is sent on all directly

attached rings except the ring that experienced the configuration change.

When a processor has received Network Topology messages from all of the

gateways on the new ring, the processor merges the topology in the messages
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if msg.timestamp < min_timestamp for msg source ring or
msg is already in recv_msgs for ring source then
discard msg
return
endif
if amgateway then
forward msg
for each gateway identifier in new_gateways do
if gateway is in topology then timestamp := msg.timestamp
endfor
endif
add to msg source ring recv_msgs list
add new _rings data structures to ring_table with
max_timestamp := msg.timestamp and
min_timestamp := msg.timestamp
add a row to guarantee for each ring in new_rings
source ring max_timestamp := msg.timestamp

Figure 5.9: Algorithm executed by a processor or a gateway on receipt

of a Topology Change message.

to determine the rings in the network, including the new ring initiated by
the Configuration Change message. The processor then generates a Topol-
ogy Change message containing any added rings in new_rings and any deleted
rings in del_rings. The Topology Change message once generated is added to
recv_msgs for the new ring and is forwarded by the gateways. The pseudocode

executed by a processor on receipt of a Network Topology message is given in

Figure 5.8.

Receipt of a Topology Change Message

When a processor receives a Topology Change message, it accepts the message
and adds it to recv_msgs for the src_ring_id, unless it has already placed a
Topology Change message with the same identifier in recv_msgs, in which case
it discards the Topology Change message. If a gateway accepts the Topology

Change message, it forwards it to the rest of the network.
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for each ring in del_rings do
delete data structure for ring from ring_table
if amgateway then
delete ring and connected gateways from topology
endif
delete column and row for ring from guarantee array
delete entry for ring from my_guar_vector
endfor
for each ring in new_rings do
add row for ring to guarantee array
endfor
if amgateway then
for each ring in new_rings do
add ring to topology
endfor
for each gateway in new_gateways list do
delete gateway from topology
add gateway as edge in topology
endfor
endif
deliver Topology Change message

Figure 5.10: Algorithm executed by a processor or a gateway on delivery

of a Topology Change message.

It a processor accepts the Topology Change message, it adds data structures
for the previously unknown rings in the new_rings list of the Topology Change
message to ring_table. Each ring is added to ring_table with an empty recv_msgs
list and a min_timestamp and max_timestamp equal to the timestamp of the

Topology Change message.

A gateway also marks the edges corresponding to new_gateways in topology
with the timestamp of the Topology Change message indicating that those edges
will be deleted from the topology at that timestamp. These new gateways will
connect a different pair of rings after the Topology Change message is ordered.
The pseudocode executed by a processor or gateway on receipt of a Topology

Change message is given in Figure 5.9.
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Delivery of a Topology Change Message

When a Topology Change message is the lowest entry in cand_msgs at a gateway,
the gateway deletes the new_gateways from topology since they will now connect
a different pair of rings. The gateway then adds the rings in new_rings and the
gateways in new_gateways to topology. The gateway also deletes the rings in
del_rings from topology. All gateways connected to a deleted ring are deleted
with that ring.

The processor or gateway also deletes the components corresponding to the
rings in del_rings from the guarantee array, my_guar_vectors and ring_table. A
row for each ring in new_rings is added to the guarantee array; the timestamp
for each entry in the row is initialized to the timestamp of the Topology Change
message. When a processor has completed processing a Topology Change mes-
sage, it delivers the message. The pseudocode executed by a processor to deliver

a Topology Change message is given in Figure 5.10.

Message Ordering During a Topology Change

When a Configuration Change message for a directly connected ring is pending
(received but not delivered), a processor discards a message (does not place
it into recv_msgs, if the message has a timestamp less than the timestamp of
the Configuration Change message and if it was forwarded onto the ring by a
new gateway (a gateway that was not a member of the old ring). All messages
received from a new gateway with timestamps greater than the timestamp of
the Configuration Change message are buffered by the processors and gateways
on the ring until after the Configuration Change message is delivered. These
buffered messages may be from previously known rings and may follow a tempo-
rary interruption in the forwarding of messages. Once the Configuration Change
message and its associated Topology Change message have been delivered, the
buffered messages are added to recv_msgs and are forwarded by the gateways in
order.

To deliver a message in safe order, a processor waits until it knows that all
processors and gateways in the current topology have received the message. If

a topology change has partitioned the network and a message that requested
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safe delivery is not known to have been received by all of the processors on a
disconnected ring (because a Guarantee Vector message that guaranteed the
message as safe had not been received), that ring must be deleted from the
topology before the message can be delivered in safe order.

Since there is a delay in forwarding messages through the network, some
messages forwarded onto a ring after a configuration change will have a lower
timestamp than the timestamp of the Configuration Change message that dis-
connected the forwarding path. When the forwarded message is the low entry
in cand_msgs, the topology still contains the ring disconnected by the config-
uration change. If a message requesting safe delivery was not guaranteed as
safe on the old ring, each processor and gateway on the old ring proceeds to
a new ring containing only itself to deliver the message. To accomplish this,
the multiple-ring protocol generates additional configuration changes using two

additional message types.

The Data Structures

The data structures and message types described below facilitate the removal

of rings from the current topology to allow ordering of safe messages.

Local Data Structures

o pending_SCC_buffer: List of Transitional Configuration Change messages

that have been received but not processed.

Message Types

Transitional Configuration Change Message

A Transitional Configuration Change message is created by a gateway when a
message requesting safe delivery has not been guaranteed as safe by a directly
attached ring that experienced a configuration change. The Transitional Con-
figuration Change message informs the other processors and gateways in the
network that the processor or gateway is proceeding to a ring containing only
itself. The Transitional Configuration Change message is not delivered to the

application and contains the following fields:
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o timestamp: The timestamp of the message that requested safe delivery.

o src_ring_id: The identifier of the ring that did not guarantee the message

as safe.

o conf_id: The identifier of the old ring in the pending Configuration Change

message for the new ring.

o temp_ring_id: The identifier of the new ring. The new ring identifier
consists of the identifier of this processor or gateway (as a representative)

and a ring sequence number one greater than the sequence number of the

conf_id.

o next_ring_id: The sre_ring_id from the pending Configuration Change mes-

sage for the ring.

gway_id: The identifier of the gateway that originated the message.

The Transitional Configuration Change message does not contain a
memb_list field since the membership of the new ring is the processor or gateway
itself.

Transitional Topology Change Message

A Transitional Topology Change message is generated by each processor or
gateway on the ring that did not guarantee the message as safe. The Tran-
sitional Topology Change message is forwarded by the gateways to notify the
other processors and gateways in the network of the change in the topology
and to allow delivery of a message requesting safe delivery. The Transitional
Topology Change message is forwarded and delivered in order along with the
other messages in the network. The local view of the topology is updated when
the Transitional Topology Change message is delivered to the application. The
Transitional Topology Change message is sent with a request for agreed delivery

and contains the following fields:

o timestamp: The timestamp of the message that requested safe delivery.

o src_ring_id: The src_ring_id of the message that requested safe delivery.
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o type: Transitional Topology Change.

o conf_id: The lowest ring identifier in new_rings determined by lexicograph-

ical order.

o new_rings: The identifiers of the added rings, i.e. the singleton rings con-

taining the gateways.
o del rings: The identifiers of the deleted rings.

o new_gateways: A list of the gateways added to the topology.

The identifier of the Transitional Topology Change message consists of the
first four fields above.

The Transitional Topology Change messages are delivered by a processor
or gateway executing the multiple-ring protocol in the global total order. The
Transitional Topology Change message type is ordered in the message delivery

order as follows: Transitional Topology Change < Regular.

The Algorithm

When a gateway determines that the low entry message in cand_msgs cannot
be delivered as safe on a directly attached ring in the current topology, it gen-
erates a Transitional Configuration Change message. This message cannot be
guaranteed as safe on the ring because it has been received from the single-ring
protocol after a Configuration Change message for the ring, and the Config-
uration Change message had a timestamp greater than the timestamp of the
message that requested safe delivery. This situation can only occur when mes-
sages are forwarded onto the ring, and is caused by a delay in the forwarding
of messages. The Transitional Configuration Change message generated by a
gateway is forwarded throughout the connected component of the network. A
Transitional Configuration Change message generated by a processor (not a
gateway) is only delivered locally. The pseudocode executed by a processor or

gateway to generate a Transitional Configuration Change message is given in

Figure 5.11.
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if low message in cand_msgs requested safe delivery and
a directly attached ring did not guarantee message and
directly attached ring has pending Configuration Change message then
generate Transitional Configuration Change message to reduce
directly attached ring to singleton
send Transitional Configuration Change message on all other
directly attached rings
add Transitional Configuration Change message to pending_SCC_buffer
endif

Figure 5.11: Algorithm executed by a processor or a gateway when the
low message in cand_msgs requested safe delivery and cannot be guaranteed

as safe by a locally attached ring.

On receipt of a Transitional Configuration Change message, a processor or
gateway adds an entry to its ring_table for temp_ring_id with min_timestamp and
maz_timestamp equal to the timestamp of the Configuration Change message
pending for the next_ring_id.

On receipt of a Transitional Configuration Change message, a gateway marks
the edge corresponding to gway_id with the timestamp of the Transitional Con-
figuration Change message. If the message corresponding to the low entry in
cand_msgs contains a request for safe delivery and the message has been guaran-
teed as safe in the topology that remains accessible, then the gateway generates
a Transitional Topology Change message listing in new_rings the temp_ring_id
from each of the Transitional Configuration Change messages received. The
identifiers of all of the rings that have become disconnected due to the config-
uration changes listed in the Transitional Configuration Change messages are
listed in del_rings. The identifiers of the gateways that sent the Transitional
Configuration Change messages are listed in new_gateways. These gateways are
each directly connected to a new singleton ring in new_rings. The pseudocode
executed by a processor or gateway on receipt of a Transitional Configuration
Change message is given in Figure 5.12.

A processor (not a gateway) on the ring that incurred the configuration
change can generate the Transitional Topology Change message directly since
it proceeds to a singleton ring containing only itself. It places the identifier of its

new singleton ring in new_rings and the identifiers of all rings in its ring_table



5.2, THE TOPOLOGY MAINTENANCE ALGORITHM 115

add Transitional Configuration Change message to pending_SCC_buffer
add temp_ring_id to ring_table
update conf.id of Configuration Change pending for next_ring_id
if amgateway then
mark gateway in topology with message.timestamp
if low message in cand_msgs is safe in
remaining connected network then
construct Transitional Topology Change message
for each message in pending_SCC_buffer do
add temp_ring_id to new_rings
add conf.id to del_rings
add gwayid to new_gateways
discard Transitional Configuration Change message
endfor
send Transitional Topology Change message
add Transitional Topology Change message to recv_msgs of src_ring.id
endif
endif

Figure 5.12: Algorithm executed by a processor or a gateway on receipt

of a Transitional Configuration Change message.

(except the new_ring_id from the pending Configuration Change message) in
del_rings. It then delivers the Transitional Topology Change message locally
and does not broadcast it; this suffices because there are no other processors or

gateways on the ring with identifier temp_ring_id.

When the Transitional Topology Change message is the low entry in
cand_msgs, a gateway deletes the rings in del_rings and adds the rings in
new_rings to the topology. It also adds the gateways in new_gateways. A proces-
sor or gateway delivers a Transitional Topology Change message to inform the
application of the changes to the topology. If there are messages in recv_packets
from the deleted rings, these messages can still be delivered if the requirements
for agreed or safe delivery in the reduced topology are met. A processor on a
detached ring can also deliver the message as agreed or safe on that ring. The
pseudocode executed by a processor or gateway when it delivers a Transitional

Topology Change message is given in Figure 5.13.
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for each ring in del_rings do
if recv_msgs for ring is empty then
delete ring from ring_table
else
mark ring for deletion
endif
if amgateway then
delete ring from topology
endif
endfor
add each ring in new_rings to ring_table
if amgateway then
add each ring in new_rings to topology
add each gateway in new_gateways to topology

endif

Figure 5.13: Algorithm executed by a processor or a gateway when the

low message in cand_msgs is a Transitional Topology Change message.

Example

Returning to the example in Figure 5.5, let’s examine what happens if ring B
partitions into B’ and B” as shown in Figure 5.14. The Configuration Change
message delivered by the processors on ring B’ has timestamp 25. The data
structures at gateway ¢, after the Configuration Change message is received,
are also shown in Figure 5.14.

When gateway ¢ receives the Configuration Change message, it adds the mes-
sage to recv_msgs for ring B, increases the maz_timestamp for B to 25, copies
my_guar_vector into the Configuration Change message and forwards it. Gate-
way ¢ also sets its own timestamp in topology to 25. The Configuration Change
message cannot be delivered yet, because messages beyond timestamp 11 have
not been received from . Since the lowest entry in cand_msgs corresponds
to ring C' and recv_msgs for C' is empty, gateway ¢ investigates the connected
component of topology. In determining the connected component, ¢ considers
all gateways with timestamps not equal to —1 to be deleted. Since there are
no other connections to ring B, ¢ determines that (' has become disconnected
and sends a Topology Change message deleting ' at timestamp 11. When
this Topology Change message is ordered, C' is deleted by the processors on
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Data structures at gateway q

A: Recv_msgs = 14,15,26,29
Max_timestamp = 29
Min_timestamp = 14

B: Recv_msgs = 13,15
Max_timestamp = 25
Min_timestamp = 13

C:Recv_msgs = (empty)
Max_timestamp = 11 Al BIC
Min_timestamp = 11 Al29| 2511
B':Recv msgs =25 B|15| 25|11 | Quarantee array at q
Max_timestamp = 25 Cl 7] 910
Min_timestamp = 25 Bl- |- |~

Figure 5.14: An example with ring B partitioned into B’ and B”. The
rings are indicated by circles and the processors are drawn as squares.

The data structures at gateway ¢ are also shown.

rings A and B’. This allows those processors and ¢ to order messages beyond
timestamp 11, in particular the message from ring B with timestamp 13, the
message from ring A with timestamp 14, and the messages from rings A and B

with timestamp 15.

When the Configuration Change message is the lowest entry in cand_msgs,
gateway ¢ sends a Network Topology message on ring B’ with a timestamp 25
and a topology consisting of ring A. Since ¢ is the only gateway on the new
ring, it does not wait for additional Network Topology messages and instead
proceeds immediately to construct the Topology Change message. Gateway ¢
sends a Topology Change message on A indicating the addition of ring B’ and
the deletion of ring B. When they receive the Configuration Change message,
the processors on A add a data structure for ring B’ to their ring_table. They
delete the data structure for ring B from their ring_table when they deliver the
Topology Change message.

When a processor on ring B’ receives the Network Topology message from
q, it has all of the Network Topology messages and determines that the current
topology consists of A and the new ring B’. Each processor on the new ring B’
creates a Topology Change message indicating the addition of ring B’ and the
deletion of ring B with timestamp 25 and src_ring_id that of B’. The processor
then adds the Topology Change message to recv_msgs for ring B’. The processor
deletes ring B when it delivers the Topology Change message.
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Handling Multiple Concurrent Configuration Changes

The multiple-ring membership algorithm does not have any control over the
order or timing of configuration changes, thus Topology Change messages and
further Configuration Change messages may be received before the current Con-
figuration Change message has been delivered. If a processor is waiting for a
Network Topology message from a gateway and instead receives a Configura-
tion Change message indicating that the gateway is no longer connected, the
protocol must be able to proceed without that Network Topology message. We
now describe the handling of Configuration Change messages that arrive before
a pending Configuration Change message has been delivered. The receipt and
delivery of Topology Change messages and the delivery of Configuration Change

messages are unaffected by multiple concurrent topology changes.

Receipt of a Configuration Change Message

On receipt of a Configuration Change message, a processor takes the actions de-
scribed in handling a single Configuration Change message. If the Configuration
Change message is for a directly attached ring that already has a Configura-
tion Change message pending, a processor also takes the actions as if a Network
Topology message had just been received. The processor may now have received
all the needed Network Topology messages for a pending Configuration Change
message since some gateways may not be on the new ring of the most recent

Configuration Change message.

Receipt of a Network Topology Message

On receipt of a Network Topology message, a processor checks whether it has
all of the Network Topology messages for the pending Configuration Change
message with the same timestamp. It must have received Network Topology
messages from all neighboring gateways with begin_timestamp less than or equal
to the timestamp of the associated Configuration Change message; subsequent
Configuration Change messages may have reduced this set of neighbors. If it has
received these messages, the processor takes the actions described for receipt of

a Network Topology message when handling a single topology change.
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d
Ot

c. After timestamp 125

b: After timestamp 120 d: After timestamp 130
Figure 5.15: An example with rings A, B, C, D, F and F indicated by

circles. The gateways are drawn as lines. At timestamp 120, rings A

and F merge and become A’. At timestamp 125, ring B’ is formed by a
partition of B, and at timestamp 130 the rest of the processors from B

form B”.

Message Ordering

If there are multiple Configuration Change messages pending for a single ring,
a processor buffers messages forwarded by all new gateways. The messages are
removed from the buffer when the associated Configuration Change message is
delivered.

A processor also uses all of the pending Configuration Change messages to
determine if the ring with the lowest entry in cand_msgs has become discon-
nected. If the lowest entry in cand_msgs requested safe delivery, the processor
uses all pending Configuration Change messages to determine if a ring that did
not guarantee the message has become disconnected. Otherwise, the ordering

of messages proceeds as in the case of a single topology change.

Example

Consider the network in Figure 5.15a. The topology of the network is progress-
ing through the topology changes shown. Initially, there are six rings. These
rings progress through two topology changes.
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The first topology change is the merging of rings A and F' into the new
ring A’ (Figure 5.15b). The Configuration Change message received by the
processors and gateways on A’ reports the change and has timestamp 120. The
second topology change is the partitioning of ring B into B’ and B” (Figures
5.15¢ and 5.15d). Two Configuration Change messages are delivered: one is
received by the processors and gateways on B’ and has timestamp 125, and the
other is received by the processors and gateways on B” and has timestamp 130.
The gateways that receive the Configuration Change messages forward these
messages to inform the other processors in the network of the configuration

change.

The guarantee vectors at gateway a, after the Configuration Change mes-
sages for A" and B’ have been received, are shown in Figure 5.16. The guarantee
vectors for A’ and B’ are maintained by a starting immediately after the Con-
figuration Change messages are received. Since neither of the Configuration
Change messages has been delivered, they have not yet affected the topology
information. The messages forwarded onto A’ by gateway d with timestamps
greater than 120 are buffered at a and are not forwarded or added to recv_msgs
until the ordering timestamp reaches 120 and the Configuration Change mes-

sage has been delivered. Messages forwarded by d onto A" with timestamps less
than 120 are discarded by a.

At gateway a, recv_msgs for E is empty and maz_timestamp for E is 85.
Prior to the topology changes, gateway b forwarded FE’s messages to gateway
a. After the first topology change, gateway d forwards messages from F to
gateway a, but gateway a buffers these messages until after it has delivered the
Configuration Change and Topology Change messages for A’. When gateway a
receives the Configuration Change message for B’, it knows that gateway b is

no longer forwarding messages from F to gateway a.

Gateway a will never receive the messages from F between timestamps 85
and 120. Gateway a must delete K from its topology at timestamp 85 to avoid
inconsistencies. To inform the rest of the network of the deletion, ¢ transmits
a Topology Change message with timestamp 85, src_ring_id equal to E, and
contents stating that /' should be deleted. This Topology Change message will
be ordered by the processors on A" and B’, but will be discarded by d because



5.3. PERFORMANCE 121

Al B |C|D E F
A 120 110(100| 95| 85| 90
B (120 125|124 |122| 85 | 90
A’'[120 125|124 122|120 | 120
B’ 125 125|125|125|125 |125

Figure 5.16: Some of the guarantee vectors at gateway a for rings A and B
after receiving the Topology Change messages informing of the formation
of rings A’ and B’ (Figure 10c¢).

it has a timestamp less than 120. Gateway d maintains a connection with £
and does not need to delete it. When the ordering timestamp at a reaches 90,
gateway a sends a Topology Change message deleting I

Rings B, C' and D are not deleted by gateway a at this time because its
recv_msgs list for each of these rings has messages up through timestamp 120.
The Configuration Change message at timestamp 120 adds a connection via
gateway d through A’, and messages from B, C' and D are received at gateway
a. The deletions of £ and F' at a are essential to allow the ordering of messages
to progress at gateway a.

Gateway « waits until its ordering timestamp has reached 120 and then
sends a Network Topology message on A’ indicating that its current topology
outside of A" is B, C, and D. When «a receives the Network Topology message
with timestamp 120 from d, a is informed of the new connection to B, ', D
and F and adds FE back into the topology of the network. Gateway a also
sends a Topology Change message indicating that rings A’ and E were added
at timestamp 120. The message also indicates the deletion of A at timestamp
120. Upon receipt of the Topology Change message, the processors have all of

the information they need to order messages beyond timestamp 120.

5.3 Performance

Flow Control

The single-ring protocol provides effective flow control within a single broad-

cast domain. It ensures that all processors and gateways on the ring have an
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opportunity to broadcast messages, and limits the maximum rate of transmis-
sion by any individual processor on the ring. However, a mechanism to create
backpressure on the applications generating messages is required to avoid unlim-
ited output buffering requirements within the single-ring protocol for messages
waiting to be broadcast.

Messages are also queued in an input buffer for delivery to the application.
This buffer can grow to unlimited size if the application is not keeping up with
the message generation rate. Consequently, a backpressure mechanism is also
required at the application interface.

Although the Totem protocol is defined as separate layers, several of the
layers are normally compiled into a single process, but there may be multiple
processes implementing Totem within a processor. For a processor to buffer
messages between layers of the protocol within a process is pointless. Instead,
we have implemented a process oriented flow-control mechanism. Each process
maintains a variable to indicate if any of the interface queues has reached a
predefined overflow point. The setting of this variable activates a backpressure
mechanism which reduces the incoming traffic until the queue has reached a

more reasonable size. This creates a network-wide flow-control mechanism,

which is described below.

The Data Structures

Regular Token
The following fields are added to the regular token:

o block: A boolean indicating whether the network is congested, as explained

below.

o block_seq: A sequence number indicating the current block sequence num-

ber for this ring.

Local Variables

Each process maintains the following variables:

o site_block: An integer indicating the number of message queues in this

process that are full, as defined by max_threshold below.
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o site_block_seq: The highest block sequence number known to this proces-

SOr.

For each queue of messages waiting to be sent the process maintains the

following variables:

o max_threshold: Number of messages allowed in the queue before this queue

is in danger of overflowing.

o min_threshold: Number of messages in the queue for the queue so that it

no longer in danger of overflowing.

o set_site_block: An enumerated type with one of three values that indicate
whether this queue has reached the maz_threshold, or has been asked by

the receiving site to block, or neither.

For each single-ring protocol connection, the process maintains the following

variable:

o blocking_token: Boolean indicating whether this site set the block field of
the token.

The variables site_block and site_seq are initialized to zero, the max_threshold
and min_threshold values for each queue are established using heuristics based
on several factors including buffer and latency requirements. The set_site_block
for each queue and blocking_token for each process executing the single-ring

protocol are initialized to false.

The Algorithm

A process maintains a queue at each output interface, and adds a message to the
queue when the message destination is not ready to receive it. For each queue,
the process counts the number of messages in the queue. When the count reaches
max_threshold, the process increments site_block and site_seq. The process also
sets set_site_block. The pseudocode executed by a processor on overflow of a
queue is given in Figure 5.17. When a queue that had previously reached

max_threshold reaches min_threshold, the block can be removed; site_block is
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if queue size >= max_threshold and set_site_block = FALSE then
site_block++
site_seq++

endif

set_site_block := SND_BLOCK

Figure 5.17: Algorithm executed by a processor or a gateway when the

number of messages in a send queue reaches the maximum threshold.

If queue size <= min_threshold and set_site_block = SND_BLOCK then
site_block——
set_site_block := FALSE

endif

Figure 5.18: Algorithm executed by a processor or a gateway when the
number of messages in a send queue reaches the minimum threshold after

having reached the maximum threshold.

then decremented and set_site_block is unset. The pseudocode executed by a
processor to unset site_block is given in Figure 5.18.

A process does not accept messages from users unless site_block equals zero.
At the single-ring protocol interface, there is no benefit to the process refusing
to accept messages. Instead, the process uses the token to propagate the site
block and to reduce the traffic generated by other processors in the network. A
single-bit block field is added to the token to propagate a processor’s site block
to the other processors on the ring. The block_seq field is added to the token to
allow processors to recognize an out-of-date block.

When the token arrives and the site is blocked but the token is not blocked,
if the token block_seq is less than site_seq then the processor sets the block field
of the token and sets blocking_token to true to remember that this site blocked
the token. If the token is blocked but the processor is not blocked and this
processor set the token block field, then the processor unsets the token block
field. Otherwise, if the token block_seq is greater than site_seq then some other
processor wants the processors on the ring to block so this processor increments

site_block and sets set_site_block to remember that it set the site_block.
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if token.block = TRUE then
if site_block = 0 then
if blocking_token = TRULE then
token.block := FALSE
blocking_token := FALSE
else if token.block_seq > site_seq then
site_block++
set_site_block := RCV_BLOCK
endif
endif
else
if set_site_block = RCV_BLOCK then
site_block——
set_site_block := FALSE
endif
if site_seq > token.block_seq and site_block > 0
blocking_token := TRULE
token.block := TRUE
endif
if site_seq = token.block_seq and site_block > 0 and
set_site_block = SND_BLOCK then
site_seq++
token.block := TRUE
blocking_token := TRULE
endif
endif
site_seq := MAX( site_seq, token.block_seq )
token.block_seq := site_seq

Figure 5.19: Algorithm executed by a process on receipt of the token.

Before forwarding the token, the processor sets site_seq to the maximum of
site_seq and the token block_seq field. The processor then sets the token block_seq
field to the value in site_seq.

A process is blocked if its site_block variable is greater than zero. A blocked
process continues to send messages as allowed by the single-ring protocol. If the
process is part of a gateway, it also continues to forward messages.

A process uses multiple values for set_site_block to remember what caused
site_block to be set. The process sets set_site_block to RCV_BLOCK when it

increments site_block because it received a token with the block field set. If the
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queue reaches maz_threshold, the process sets set_site_block to SND_BLOCK,
because even if the site_block was originally set by receipt of a blocked token,
this site’s send queue is now also blocking which overrides the token block. If
the token is received with the block field unset and the site’s set_site_block set
to RCV_BLOCK, this site had previously received a token with the block field
set which is now unset so the process decrements site_block. The pseudocode
executed by a processor to handle flow control on receipt of the token is given
in Figure 5.19.

The token and site blocking mechanisms provide a means of propagating
information about a congested node throughout the network. The time to
propagate the block operation to a particular processor on the ring is on av-
erage one token rotation, one half rotation waiting for the token and one half
rotation before the token reaches the other processor. The use of the site_block
variable provides immediate forwarding of the block operation through a gate-
way. Thus, a block or unblock operation will propagate through the network
quickly. Although more sophisticated mechanisms of gradually decreasing or
increasing network traffic to avoid congestion could be used, they would require

additional space in the token and additional processing at each site.

Simulation

The single-ring protocol simulator has been extended to allow study and debug-
ging of the Totem multiple-ring protocol [19]. The single-ring protocol simulator
is designed to simulate a ring with an arbitrary number of processors using one
physical host. To simulate multiple rings, this simulator is distributed across
multiple physical hosts with each host simulating a ring. The connections be-
tween rings are provided by the gateways. Fach gateway is split into two parts
connected by a TCP socket. The single-ring protocol executes on the physical
host that simulates the ring. Most of the gateway code executes on one of the
two physical hosts and the other side executes a simple filtering process; the
two sides communicate over a TCP socket. The distributed simulator was de-
veloped for the multiple-ring protocol to allow study of larger systems than are

physically available.
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Implementation

The Totem multiple-ring protocol has been implemented using the C program-
ming language on a network of Sun 4/IPC workstations connected by an Eth-
ernet. To allow study of the multiple-ring protocol, the single-ring protocol was
modified to allow specification of a network number that determines the socket
to be used for broadcasts. This allows multiple rings to be executed on a single
Ethernet. However, the design of the single-ring protocol precludes running
more than a few rings on a single Ethernet since the protocol is built on an

assumption that the message loss rate is relatively low.

Measurements of the multiple-ring protocol were made for two rings, operat-
ing over separate Ethernets, connected by a gateway with two processors other
than the gateway per ring. A Sun Sparcstation 20 was used as the gateway and

four Sun 4/1PCs were used as the processors.

The single-ring protocol with three processors (two IPCs and one Sparcsta-
tion 20) on a ring sending 1024 byte messages achieves a throughput of 768
messages ordered per second. If the multiple-ring protocol is run as well, the
throughput drops to 636 messages ordered per second. This translates to an
additional 0.27 milliseconds per message for the multiple-ring protocol. Two
rings running with the gateway forwarding messages between them acheived a

throughput of 631 messages ordered per second.

The above tests had the single-ring flow control parameters set to allow
the gateway to send twice as many messages per token rotation as each of
the individual processors. This ensured that the multiple-ring protocol flow-
control was seldom invoked. To study the effectiveness of the flow control of
the multiple-ring protocol, we varied the proportion of messages sent by the
processors and the gateway on each ring. Setting the proportion of messages sent
by the gateway to 1.5 times that for each individual processor (flow-control was
invoked regularly) resulted in a throughput degradation of less than 2 messages

per second.
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Figure 5.20: A robust sixteen node graph. Even nodes are connected at
hops of one and six, and odd nodes are connected at hops of one and

four.

5.4 Network Configuration

Reliable ordered delivery of messages can only be achieved if the processors are
able to communicate with each other. Many wide-area networks are deliberately
designed to provide alternative routes between nodes so that failure of a single
link does not preclude further operation. Typical networks provide a small
number of alternative routes, but in many applications the additional delay
involved in using an alternative route may be unacceptable. Thus, the network
design must be carefully considered if reliable ordered delivery protocols are to
be effective.

It we represent the network as a graph where each local-area network is a
node and each gateway is an edge, then network connectivity can be analyzed
as a graph partitioning problem. Alternative path lengths can be determined
from the minimum depth spanning trees of a graph after failures occur. The
height of the minumum depth spanning tree rooted at node n is the length of
the minumum route to the most distant node from n in the network.

We have built a simulator to evaluate network designs and have investigated
typical network graphs that contain 50 nodes and are at least bi-connected,
each node having maximum degree 4 (i.e. 50 local-area networks with at most
4 gateways on each local-area network). Two types of network designs were
investigated: random and robust. The random graphs were constructed by
adding random edges to the graph. An edge was not added if it made the

degree of a node greater than four or if it created a self-loop or parallel edge.



5.4. NETWORK CONFIGURATION 129

§15‘
'_

o

£

c

c i
S 10
o

0

S

<

2 59
(]

o

c

©

(]

= 0 T T T T T T T T T

o
a1
[any
o
[
a1

20 25 30 35 40 45

Number of Edges Removed
Figure 5.21: The effect on the spanning tree height of deletion of edges
in a graph. The graphs contain 50 nodes with a maximum vertex degree
of 4 and, thus, contain a maximum of 100 edges. A random biconnected
graph and a graph designed for robustness are depicted. Note than the

heights of the spanning tree increase quite slowly as edges are deleted.

The robust graphs were constructed to be resilient to edge deletion. A robust
graph was specified by numbering the nodes sequentially and then specifying
the number of hops between connected nodes in the pattern. A sample sixteen
node robust graph is shown in Figure 5.20. The even numbered nodes have
edges with one hop and six hops. The odd numbered nodes have edges of one
hop and four hops. These graphs are highly symmetric and are similar to the
circulant graphs studied in [14].

The effects of failure in the random and robust graphs were studied by
randomly choosing edges to delete from the graph. The spanning tree heights
and connectivity were measured as a function of edge deletion.

In Figure 5.21 we see that the heights of the spanning trees increase very
slowly as more links fail, up to quite large numbers of failed links. Consequently,
networks based on flooding should continue to deliver messages promptly even in
the presence of failed links. The increase in the average depths of the spanning
trees as failures occur in a graph indicates the added delay that messages will
experience in reaching their destinations. Both random and robust graphs were
investigated as edges (gateways) were deleted from the graphs. Simulations
show that for both random and robust graphs, if the graph remains connected,

the average depth of the spanning trees increases very slowly with edge deletion.
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Probability that Graph is Connected

Number of Edges Removed

Figure 5.22: The effect on the proportion of graphs that remain connected
as edges are deleted, one edge at a time. Note that edge deletion is much

more significant for disconnection than for spanning tree height.

Although the Totem protocol is designed to continue despite network par-
titions, reliable delivery of messages can only be provided between processors
that are in the same component of the partition. Thus, it is desirable to design
the network to increase the probability that the network will remain connected

despite failures.

Figure 5.21 includes data only for networks that remain connected. Figure
5.22 shows the proportion of networks that remain connected as edges are re-
moved one at a time. Note that the networks start to loose connectivity with
relatively few failed links. Clearly, failure to deliver a message at all is a more
serious problem than late delivery due to a circuitous route. Note also that
random networks are more vulnerable to disconnection due to link failure than

are specially designed networks.

The data indicate that, as gateways fail, partitioning of the network is of
more concern than the increased length of the routes in the network. We have
found that the network layout does affect the mean number of gateways that can
fail before the network partitions but that most “reasonable” network designs
are resistant to partitioning if the graph of the network is at least bi-connected
and the nodes have degree 4 or more.

In Figure 5.23 we consider the size of the two components into which the
network is partitioned when it is disconnected. Note that, particularly for the

specially designed graphs, the large majority of disconnections involve the dis-
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Figure 5.23: The size of the smaller disconnected component when the
graph first partitions. Note that the scale on the vertical axis is logarith-

mic.

connection of only a few nodes. This is important as it may permit continuous
operation of the larger component despite the loss of contact with a subset of
the nodes. The robust graphs, however, remained connected on average five to
seven edge deletions longer than the random graphs with the smaller discon-
nected component being only one or two nodes in over 99% of the cases. This

work is also reported in [41].

5.5 Proof of Correctness

Membership
Uniqueness of Topologies

Theorem 5.1 Fach topology identifier is unique; moreover, at any time a pro-

cessor or gateway is a member of at most one topology.

Proof. A topology identifier is the lexicographically ordered list of ring identi-
fiers of the rings that comprise the topology. By Theorem 4.1, the ring identifiers
are unique and, therefore, a topology identifier is unique.

On startup, a processor is a member of the topology whose identifier is the

list consisting of the identifier of the ring consisting of the processor itself, and
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a gateway is a member of the topology whose identifier is the pair of identi-
fiers of the rings between which it is a gateway. Fach change in the topology
is signalled by delivery of a Topology Change message, which terminates the
current topology and initiates the next topology. Thus, at any time a processor

or gateway is a member of at most one topology. O

Consensus

Theorem 5.2 [f p and ¢ are members of the same topology 11 and neither
receives a Configuration Change message that disconnects it from the other and
if p installs a subsequent topology Ty with a given set of rings, then q determines

that the same set of rings constitutes its subsequent topology.

Proof. Since p and ¢ are members of the same topology 77 and neither re-
ceives a Configuration Change message that disconnects it from the other, the
Topology Change message generated by p to initiate Ty will be forwarded to q.
It ¢ had already installed a subsequent topology 75, then the Topology Change
message initiating 75 would also have been forwarded to p. Now either the
Topology Change message to initiate Ty or the Topology Change message to
initiate T3 has a smaller identifier (timestamp, src_ring_id, type, conf-id). The
one with the smaller identifier will introduce the topology, and hence the set of

rings, installed by both p and ¢. O

Termination

Theorem 5.3 If a topology ceases to exist for any reason such as processor
failure or network partitioning, then every processor of that topology will install

a new topology, or will fail before doing so.

Proof. Each topology change in the network is signalled by the receipt of a
Configuration Change message from the single-ring protocol on each of the rings
directly affected by the topology change. (At a gateway, a Configuration Change
message triggers a Network Topology message which signals the change.) Ac-
cording to the multiple-ring protocol, a gateway that receives a Configuration

Change message will forward it onto the other attached ring. By Theorem 4.8,



5.5. PROOF OF CORRECTNESS 133

a processor (or gateway) executing the single-ring protocol on these rings will
deliver the Configuration Change message to the multiple-ring protocol exe-
cuting, or will fail before doing so. If a configuration change occurs before it
delivers the Configuration Change message then, by Theorem 4.3, it will deliver
a Configuration Change message for a different configuration, or will fail before
doing so. By Theorem 5.7, a processor or gateway executing the multiple-ring
protocol will deliver the Configuration Change message or will fail before doing
s0.

When a gateway delivers the Configuration Change message, it sends a Net-
work Topology message. Network Topology messages are retransmitted on the
local ring if they are not received. When a gateway has received Network
Topology messages from all of the gateways on the directly attached ring that
experienced the configuration change, it sends a Topology Change message. A
gateway will receive a Network Topology message from each of the other gate-
ways unless a further configuration change occurs that results in its eliminating
the sender of the message from the topology. Since there are only a finite num-
ber of gateways on a ring, only a finite number can be eliminated and eventually
a gateway will have all of the Network Topology messages it needs to send a
Topology Change message.

Topology Change messages are forwarded by the gateways and are retrans-
mitted on the local ring if they are not received. If a forwarding path exists to
a processor or gateway, then it will receive and deliver the Topology Change
message in timestamp order. If no forwarding path exists, then the processor
or gateway eliminates the ring containing the sender of the message prior to

delivering the Topology Change message. O

Topology Change Consistency

Theorem 5.4 Processors that are members of rings in the same topology T
deliver the same Initiate Topology Ty message to begin the topology. Further-
more, if two processors install a topology Ty directly after T, then the processors

deliver the same Topology Change message to terminate Ty and initiate T,.

Proof. The Initiate Topology T, message contains a list of identifiers of the rings

in Ty and is delivered when a processor installs topology T;. Thus, processors
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that are members of the same topology T, deliver the same Initiate Topology
T, message to begin T5.

The Topology Change messages delivered by two processors that install 15
directly after 77 have the same identifier and contents. If the topology change
consists of a ring deletion only and a message has been received from that ring,
then the timestamp of the Topology Change message is the highest timestamp
of a message in recv_msgs for the ring to be deleted and the src_ring_id of
the Topology Change message is the identifier of the ring to be deleted. If
the topology change consists of a ring deletion only and no message has been
received from that ring, then the timestamp of the Topology Change message is
the timestamp of the preceding Topology Change message and the sre_ring_id
of the Topology Change message is the src_ring_id of the preceding Topology
Change message. Otherwise, the timestamp and sre_ring_id of the Topology
Change message are those of the corresponding Configuration Change message.
The contents of a Topology Change message specify the rings to be added to
the topology and the rings to be deleted from the topology.

If the Topology Change messages delivered by two processors that install 15
directly after T} are Transitional Topology Change messages, the timestamp and
sre_ring-id of the Transitional Topology Change message are the same as those
of the message requesting safe delivery. The conf_id is the lowest ring identifer
in the set of singleton rings containing gateways introduced by the Transitional
Topology Change message. The contents of a Transitional Topology Change
message specify the rings to be added to the topology and the rings to be
deleted from the topology.

Topology Change messages and Transitional Topology Change messages are
delivered in the order of their identifiers, along with the other messages. The

theorem now follows. O
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Ordering

Reliable Delivery
Theorem 5.5 Fach ordered message m has a unique identifier.

Proof. Each message m is identified by its timestamp, src_ring_id, type and
conf-id fields. In the modified single-ring protocol, the processor that originates
a regular message m places a timestamp in m that is greater than the value in
the timestamp field of the token. The processor then places the timestamp of
m into the timestamp field of the token; thus, timestamps on regular messages
originated on a particular ring are unique. By Theorem 4.1, the src_ring_id is
unique. The type of a regular message is regular and the conf_id field is 0.

A Configuration Change message delivered by a processor to terminate a
configuration 'y and initiate another configuration Cy has a src_ring_id equal
to (s, which is unique by Theorem 4.1. If (5 is a regular configuration, then
the timestamp is the timestamp in the Commit token on its second rotation. If
(5 is a transitional configuration, then the timestamp is the highest timestamp
of any message delivered by the single-ring protocol before it delivered the Con-
figuration Change message. The type is Configuration Change and the conf_id
is the identifier of 5. For each transition from a configuration with identifier
conf-id to a configuration with identifier src_ring_id, all copies of the Configu-
ration Change message are identical and are regarded as the same message.

A Topology Change message that corresponds to a Configuration Change
message (not a ring deletion only) has a timestamp, sre_ring_id, and conf_id equal
to the timestamp, src_ring_id, and conf_id of the corresponding Configuration
Change message. The type is Topology Change. If the topology change consists
of a ring deletion only and a message has been received from the ring to be
deleted, the timestamp of the Topology Change message is the maz_timestamp
for the ring to be deleted, the src_ring_id is the identifier of the ring to be
deleted, the type is Topology Change, and the conf_id is the identifier of the
ring to be deleted. If the topology change consists of a ring deletion only and
no message has been received from the ring to be deleted, the timestamp of the
Topology Change message is the timestamp of the preceding Topology Change
message, the sre_ring_id is the identifier of that Topology Change message, the
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type is Topology Change None, and the conf_id is the identifier of the ring to be
deleted.

All of the members of the topology initiated by the preceding Topology
Change message delete rings in the same order determined by the timestamp at
which they are unable to order messages (because of the lack of messages from
the ring to be deleted) and by the identifiers of the rings to be deleted. Thus,
the Topology Change messages to delete a ring are generated with the same
timestamp, src_ring_id and conf_id fields.

A Transitional Topology Change message corresponds to a message that
requested safe delivery but that cannot be guaranteed as safe in the current
topology. The Transitional Topology Change message has a timestamp and
sre_ring_id of the message requesting safe delivery. The conf_id is the lowest
ring identifier in the set of singleton rings containing gateways introduced by
the Transitional Topology Change message. If the system partitions, there
may be two Transitional Topology Change messages associated with the same
safe message and, thus, with the same timestamp and src_ring_id. These two
messages will, however, have different conf_id fields.

Thus, the timestamp, src_ring_id, type and conf_id fields uniquely identify

the message. O

Theorem 5.6 If processor p delivers message m, then p delivers m only once.
Moreover, if processor p delivers two different messages, then p delivers one of

those messages strictly before it delivers the other.

Proof. By Theorem 5.5, each message has a unique identifier. When processor
p receives a message, it places the message into its recv_msgs list based on the
sre_ring_id of the message, unless it has already placed a message with the same
identifier in that list in which case it discards the message.

Processor p also maintains cand_msgs which contains, for each ring in the
ring_table, the message with the lowest timestamp in recv_msgs for that ring.
The next message to be delivered is the message with the lowest timestamp in
cand_msgs. When processor p delivers this message, p removes it from cand_msgs

and replaces it with the message with the next higher timestamp in recv_msgs
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for that ring and removes that message from recv_msgs. The theorem now fol-

lows. O

Theorem 5.7 [f processorp executing the multiple-ring protocol receives a mes-
sage m from the single-ring protocol, then p will deliver m or will fail before
doing so, unless m was forwarded by a gateway that is not in the topology of p

as of the timestamp of the message.

Proof. Processor p maintains a data structure in its ring_table for each ring in
the current topology, which includes the recv_msgs list for that ring. Processor p
deletes a ring from its ring_table only when it has delivered a Topology Change
or Transitional Topology Change message deleting that ring and it has delivered
all messages from that ring in recv_msgs.

Processor p places each message m it receives from the single-ring protocol
into the recv_msgs list of the ring whose identifier is the sre_ring_id of m, unless
p has already placed a copy of m in recv_msgs in which case p discards m.
Processor p also discards m if m has a timestamp lower than the begin_timestamp
of the gateway that forwarded the message; this gateway will not be added to
the topology until begin_timestamp.

Processor p maintains the cand_msgs list which contains, for each ring in the
ring_table, the message with the lowest entry in the recv_msgs list for that ring.
Processor p delivers messages from cand_msgs in the order of their timestamps.
When processor p delivers a message, p removes it from cand_msgs and replaces
it with the next lowest entry in recv_msgs for that ring and removes that message
from recv_msgs.

In order to remove a message from cand_msgs and deliver it to the appli-
cation, processor p must have a message in cand_msgs from each of the rings
in its ring_table with a timestamp at least equal to that of the message to be
delivered. If processor p delivers message m in safe order, then all entries in
the column of the guarantee array, corresponding to the ring on which m was
generated, contain timestamps greater than or equal to the timestamp of m.
This indicates that p has received a Guarantee Vector message from each of the

rings indicating that the message is safe at the single-ring protocol level on each
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of those rings. The Guarantee Vector messages, generated periodically by all
rings and the eventual delivery properties of the single-ring protocol (Theorem
4.9) ensure that this requirement will eventually be satisfied, provided that all
rings in the current topology remain connected.

If a ring becomes disconnected, a Configuration Change message will be
generated by the single-ring protocol. Receipt of this message will result in a
processor’s generating a Topology Change message or a Transitional Topology
Change message to remove the disconnected ring from its ring_table. Because
there are only a finite number of identifiers (timestamp, src_ring_id, type, conf-id)
less than a given identifier and only a finite number of rings that can be removed
from the ring_table, by induction it follows that these messages will eventually

be delivered to the application. O

Theorem 5.8 Processor p executing the multiple-ring protocol delivers its own

messages or will fail.

Proof. By Theorem 4.7, processor p executing the single-ring protocol delivers
each message originated by p to the multiple-ring protocol at p. By Theorem
5.7, processor p executing the multiple-ring protocol delivers all messages re-

ceived from the single-ring protocol executed at p or will fail. O

Theorem 5.9 If processor p is a member of topology T' and no topology change
ever occurs, then processor p executing the multiple-ring protocol will deliver in

T all messages originated in T'.

Proof. If no topology change ever occurs, then no configuration change ever
occurs. Consequently, by Theorem 4.8, a processor or gateway receives the mes-
sages originated on its local ring from the single-ring protocol. The gateways
forward these messages throughout the network. Each forwarded message is
broadcast on the local rings onto which it is forwarded. Again, by Theorem
4.8, a processor or gateway on these rings also receives the messages from the
single-ring protocol. By Theorem 5.7, processor p executing the multiple-ring

protocol will deliver these messages to the application. O



5.5. PROOF OF CORRECTNESS 139

Theorem 5.10 If processors p and g are both members of rings in consecutive
topologies Ty and Ty, then p and ¢ executing the multiple-ring protocol deliver
the same set of messages in Ty before delivering the Topology Change message

that terminates 11 and initiates T5.

Proof. By Theorem 5.4, if processors p and ¢ are both members of rings in
consecutive topologies 17 and T, then they both delivered the same Topology
Change message to terminate 77 and initiate T5. Thus, they both have the
same rings in their ring_table. By the forwarding of messages of the multiple-
ring protocol and by Theorem 4.10 processors p and ¢ receive in T the same
set of messages from the single-ring protocol. By Theorem 5.7, processors p
and ¢, executing the multiple-ring protocol, will deliver these messages. They

will then deliver the Topology Change message that terminates T} and initiates

T,. O

Delivery in Causal Order for Topology T’

Theorem 5.11 If my precedes my in the Lamport causal order and processor

p delivers both my and mq, then p delivers mq before p delivers my.

Proof. First we show for Lamport’s causal precedence relations that if proces-
sor ¢ originates message ms before processor ¢ originates regular message my
or if ¢ receives and delivers ms before ¢ originates my, then the identifier of
ms is less than the identifier of my in the lexicographical order of identifiers
(timestamp,src_ring_id,type,conf-id).

When processor ¢ receives a message it updates its my_timestamp and also
its my_future_ring_seq. The local variables my_timestamp and my_future_ring_seq
are recorded to stable storage to ensure that any regular message originated by ¢
after g recovers from a failure is ordered after any message received or originated
by ¢ before its failure.

When processor ¢ originates a regular message, it increments its
my_timestamp and uses that as the timestamp of the new message. The
sre_ring_id of the message is the ring_id of the ring of which ¢ is a member
when it originated the message. The ring_id.seq of that ring is greater than the

ring_id.seq of any previous ring of which ¢ was a member.
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For Configuration Change messages and Topology Change messages, the
type field ensures that these messages are delivered after any regular message
with the same timestamp and sre_ring_id. 1f two or more Configuration Change
messages or Topology Change messages corresponding to a ring deletion have
the same timestamp, src_ring_id and type, they are generated and delivered by
disjoint sets of processors in the order of the ring identifiers in the conf_id field.

The type field in the Transitional Topology Change message ensures that it is
delivered before any regular message with the same timestamp and src_ring_id.
If two or more Transitional Topology Change messages have the same times-
tamp and src_ring_id, they are generated and delivered in the order of the ring
identifier in the conf_id field.

By the transitivity on the lexicograpical order of identifiers, if my precedes
my in the closure of the Lamport causal precedence relations, then the identifier
of my is less than the identifier of ms.

By Theorem 5.18, if the identifier of m; is less than the identifier of my, then
my precedes my in the Global Delivery Order. By Theorem 5.19, if p delivers
both m; and mgy, and if my precedes my in the Global Delivery Order, then p

delivers my before p delivers my. O

Theorem 5.12 If processor p originates message m with timestamp t, then

processor q delivers m if and only if p is a member of ¢ ’s topology at timestamp t.

Proof. By the algorithm, at timestamp ¢, ¢ delivers messages from only those
rings and processors represented in its ring_table, i.e. from the members of its
current topology. If p is a member of ¢’s topology at timestamp ¢ and ¢ has
received message m, then ¢ delivers m. If p is a member of ¢’s topology but ¢
does not receive message m, then ¢ cannot deliver messages with timestamps
greater than or equal to ¢ unless ¢ generates a Topology Change message to
remove p from its topology at the timestamp of the last message from p delivered
by the single-ring protocol. Consequently, p is not a member of ¢’s topology at
t. O

Theorem 5.13 If processor ¢ originates message my, processor r originates
message may, processorr delivers my before r originates mq, processor p delivers

my, Topology Change or Transitional Topology Change message mo delivered
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by p precedes my in the Lamport causal order, and for every Topology Change
or Transitional Topology Change message delivered by p after mqo and before
my (including mo) r is a member of that topology, then p delivers my before p

delivers my.

Proof. If message mg precedes message my in the Lamport causal order, then
the timestamp tg of mg is less than or equal to the timestamp t; of my. If proces-
sor p delivers message my before it originates message ms, then the timestamp
t1 of mq is less than the timestamp t5 of m,. If processor r delivers m; then,
by Theorem 5.12, ¢ is a member of r’s topology at timestamp ¢;. But r is a
member of p’s topology from tg < t; until £5 > #;. Thus, ¢ is a member of p’s

topology at t;. By Theorem 5.12, p delivers my. O

Delivery in Agreed Order for Topology T
Theorem 5.14 The Topology Delivery Order for topology T is a total order.

Proof. By Theorem 5.5, each message delivered in topology 7" has a unique
identifier (timestamp, src_ring-id, type, conf-id). The lexicographical order on

these identifiers defines a total order on the messages. O

Theorem 5.15 If processor p delivers message my in topology T and my is any
message that precedes mo in the Topology Delivery Order for topology T, then p

delivers my in 1" before p delivers mo.

Proof. If message m; precedes message my in the Delivery Order for Topology
T, then the identifier (timestamp, sre_ring_id, type, conf-id) of my is less than
or equal to the identifier of ms.

Processors executing the single-ring protocol on each ring originate regu-
lar messages with monotonically increasing sequence numbers and timestamps.
Messages are forwarded between rings by gateways in sequence number order,
and are delivered by the single-ring protocol to the multiple-ring protocol in se-
quence number order. Thus, if processor p executing the multiple-ring protocol

receives a message from the single-ring protocol originated on a ring then, by
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Theorem 4.14, p will never subsequently receive any regular message originated
on that ring with a lower timestamp.

Now, the rings on which my; and m, were originated are in topology 7" and,
thus, are present in processor p’s ring_table when p delivered m,. If there had
been a disconnection that prevented m; from being communicated to p, a Con-
figuration Change message would have been generated leading to a Topology
Change message, disconnecting the source ring of m; immediately after the last
message received from that ring. That Topology Change message would have
terminated T'. Since my is delivered in topology T', the ring_table contains a
message from the source ring of m; with an identifier greater than or equal to
the identifier of my. Consequently, p received my. Since my has the lowest

identifier in p’s ring_table, p has already delivered m,. O

Delivery in Safe Order for Topology T

Theorem 5.16 If processor p executing the multiple-ring protocol delivers mes-
sage m in topology T and the originator of m requested safe delivery, then p has
determined that each processor in T has received m, and will deliver m or will

fail before doing so.

Proof. If processor p delivers message m in safe order, then all entries in
the column of its guarantee array, corresponding to the ring on which m was
generated, contain timestamps greater than or equal to the timestamp of m.
This condition indicates that p has received a Guarantee Vector message from
a gateway on each of the rings in T' containing a guar_vector with a timestamp
for the source ring of m that is greater than or equal to the timestamp of m.
A gateway will generate and forward such a Guarantee Vector message only
if the single-ring protocol executing at that gateway has delivered m in safe
order. By Theorem 4.15, the single-ring protocol delivers m in safe order only
if the gateway can determine that each of the processors and gateways on the
ring have received m. Therefore, processor p has determined indirectly that
each processor in topology T has received m. By Theorem 5.7, a processor p
executing the multiple-ring protocol that receives m will deliver m or will fail

before doing so. O
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Extended Virtual Synchrony

Theorem 5.17 If processor p delivers message m in topology T', then the re-

quirements for agreed or safe delivery are satisfied.

Proof. This follows from the preceding theorems. O

Theorem 5.18 The Global Delivery Order is a total order.

Proof. By Theorem 5.5, each message has a unique identifier consisting of a
timestamp, src_ring_id, type and conf_id. The identifier of a regular message m
consists of the timestamp of the message, the identifier of the regular configu-
ration in which m was originated, the type regular, and the conf_id field 0.

The identifier of a Configuration Change message that initiates a regular
configuration contains a timestamp that is obtained from the Commit token,
whereas the identifier of a Configuration Change message that initiates a tran-
sitional configuration contains a timestamp that is the highest timestamp of any
message delivered by the single-ring protocol before the Configuration Change
message. The src_ring_id is the identifier of the configuration initiated by
the Configuration Change message, the type is Configuration Change, and the
conf-id is the identifier of the previous configuration.

The identifier of a Topology Change message for a configuration change
(not a ring deletion only) consists of the timestamp, src_ring_id, and conf-id
of the corresponding Configuration Change message, and the type is Topology
Change. If the configuration change is a ring deletion and a message has been
received from the ring to be deleted, then the timestamp is the max_timestamp
for that ring, the src_ring_id is the identifier of the ring to be deleted, the type
is Topology Change, and the conf_id is the identifier of the ring to be deleted.
It the configuration change is a ring deletion only and no message has been
received from the ring to be deleted, then the timestamp is the timestamp of the
preceding Topology Change message, the sre_ring_id is the source ring identifier
of that Topology Change message, the type is Topology Change None, and the
conf-id is the identifier of the ring to be deleted.
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The identifier of a Transitional Topology Change message consists of the
timestamp and sre_ring_id of the corresponding regular message (requesting safe
delivery). The type is Transitional Topology Change and the conf-id is the
smallest ring identifier in the new_rings field of the message.

The lexicographical order on the identifiers (timestamp, sre_ring_id, type,
conf_id) is a total order and, thus, the Global Delivery Order is a total order. O

Theorem 5.19 If processor p delivers messages my and my and mq precedes

my in the Global Delivery Order, then p delivers my before p delivers ms.

Proof. Let (timestampy, srcring-idy, types, conf_idy) and (temestamps,
sreoring-idy, types, conf_idy) be the identifiers of messages mq and ms, respec-
tively. Without loss of generality, we assume that (timestampy, sre_ring_idy,
typer, conf_idy) < (timestampy, srcoring-idy, types, conf_idy). The proof is
an exhaustive case analysis.

It temestamp; < timestampy then, according to the algorithm, processor p
delivers my before p delivers ms.

It tsmestamp, = timestamps and src_ring_idy < src_ring_ids, then, accord-
ing to the algorithm, processor p delivers my before p delivers ms.

It temestamp; = timestampy, srcring_ad; = sre_ring_idy, type; = regular
and typey = regular, then conf_id; = conf_ids = 0 and this case cannot occur.

It temestamp; = timestampy, srcring_ad; = sre_ring_idy, type; = regular
and type, = Configuration Change, then this case cannot occur. For if the Con-
figuration Change message my introduces a regular configuration, then all reg-
ular messages from that configuration have higher timestamps than the times-
tamp of the Configuration Change message mq. If the Configuration Change
message mso introduces a transitional configuration, then the source ring iden-
tifier of any regular message is that of the regular configuration in which that
message was originated and, thus, cannot equal the identifier of the transitional
configuration.

It timestamp, = timestampy, sre_ring_idy = sre_ring_idy, type; = regular,
typey = topology change and the Topology Change corresponds to a Configu-
ration Change message (not a ring deletion only), then this case cannot occur

because the corresponding Configuation Change message cannot exist.
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It timestamp, = timestampy, sre_ring_idy = sre_ring_idy, type; = regular,
typey = Topology Change, the topology change corresponds to a ring deletion
and some message has been received from the ring to be deleted, then the
Topology Change message is delivered immediately after the last message from
that ring delivered by the multiple-ring protocol, i.e. the message with identifier
(temestampy,src_ring_idy,regular,0).

It timestamp, = timestampy, sre_ring_idy = sre_ring_idy, type; = regular,
and typey = Topology Change None, then this case cannot occur. The Topology
Change None message mq must be delivered immediately following the Topology
Change message that introduced the ring to be deleted. Thus, the Topology
Change None message ms has the same timestamp and source ring identifier as
the Topology Change message and, thus, the same timestamp and source ring
identifier as the Configuration Change message corresponding to the Topology
Change message. Since the regular message m; cannot have the same timestamp
and source ring identifier as a Configuration Change message, it cannot have
the same timestamp and source ring identifier as the Topology Change None
message.

It temestampy; = timestamps, srering_idy = sre_ring_idy, type; = Config-
uration Change, and type; = Configuration Change, then it cannot be the case
that one of the messages initiates a regular configuration and the other initiates
a transitional configuration because then sre_ring_idy = sre_ring_id,. It both
of the messages initiate a regular configuration, then these messages correspond
to different prior transitional configurations and a processor delivers only one
of these messages. If both messages initiate a transitional configuration, then
conf_id; = conf_ady = 0 and this case cannot occur.

It timestampy, = timestamps, src_ring_idy = sre_ring_idy, type; = Configu-
ration Change, types = Topology Change and the topology change corresponds
to a Configuration Change message, then the Topology Change message is de-
livered immediately after the Configuration Change message.

It temestampy; = timestamps, srering_idy = sre_ring_idy, type; = Config-
uration Change, types = Topology Change, the topology change corresponds to
a ring deletion and some message has been received from the ring to be deleted,

then this case cannot occur. The timestamp of the Topology Change message is
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the timestamp of the last regular message delivered from the ring to be deleted
and the source ring identifier is the identifier of that ring. But, no regular mes-
sage can have the same timestamp and source ring identifier as a Configuration
Change message.

It timestampy, = timestamps, src_ring_idy = sre_ring_idy, type; = Configu-
ration Change, and type; = Topology Change None, then the Topology Change
None message is delivered immediately after the Topology Change message as-
sociated with the Configuration Change message.

It tsmestamp, = timestamps, src_ring_1dy = src_ring_dsy, type; = Topology
Change corresponding to a Configuration Change message, and types = Topol-
ogy Change corresponding to a Configuration Change message, then messages
my and mq are associated with Configuration Change messages that initiate the
same configuration. A processor delivers only one such message.

If timestamp; = timestamps, src_ring_id; = src_ring_idsy, type; = Topol-
ogy Change corresponding to a Configuration Change message, and type; =
Topology Change corresponding to a ring deletion and some message has been
received from the ring to be deleted, then this case cannot occur. Message
my has the same timestamp and source ring identifier as some Configuration
Change message. Message my has the same timestamp and source ring identifier
as some regular message. But no Configuration Change message and regular
message can have the same timestamp and source ring identifier.

If timestamp; = timestamps, src_ring_id; = src_ring_idsy, type; = Topol-
ogy Change corresponding to a Configuration Change message, and type; =
Topology Change None, then message ms is delivered immediately after mes-
sage mj.

It tsmestamp, = timestamps, src_ring_1dy = src_ring_dsy, type; = Topology
Change corresponding to a ring deletion and some message has been received
from the ring to be deleted, and type; = Topology Change corresponding to a
ring deletion and some message has been received from the ring to be deleted,
then conf_idy = con f_1dy and so this case cannot occur.

It tsmestamp, = timestamps, src_ring_1dy = src_ring_dsy, type; = Topology
Change corresponding to a ring deletion and some message has been received

from the ring to be deleted, and type; = Topology Change None, then this case
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cannot occur. Message m; has the same timestamp and source ring identifier
as a regular message. Message my has the same timestamp and source ring
identifier as a Configuration Change message. But a regular message and a
Configuration Change message cannot have the same timestamp and source
ring identifier.

It tsmestamp, = timestamps, src_ring_1dy = src_ring_dsy, type; = Topology
Change None, and type; = Topology Change None then, by the algorithm,
messages my and my are delivered in the order of the identifiers of the rings to
be deleted.

If timestamp; = timestampsy, src_ring ad; = sre_ring_ads, type; = typey =
Transitional Topology Change, then this case cannot occur. Processor p delivers
either my or my because m; and my are generated in disjoint topologies.

If temestamp; = timestamps, srcring_id; = srcering_idsy, type; = Tran-
sitional Topology Change, and type;, = regular then, by the algorithm, the
Transitional Topology Change message m is delivered immediately before the
corresponding safe message m;.

If temestamp; = timestamps, srcring_id; = srcering_idsy, type; = Tran-
sitional Topology Change, and types; = Configuration Change, then there
must have been a regular message ms that requested safe delivery such that
timestampi=timestamps and src_ring_td, = srcring_ads. As demonstrated
above my is delivered ms and ms is delivered my and, therefore, my is delivery
before my. The arguments for types = Topology Change and types = Topology
Change None are similar.

In any case, processor p delivers my before p delivers my. The Global Deliv-

ery Order is, thus, the set of messages delivered by all of the processors. O

5.6 Summary

The Totem multiple-ring protocol uses a hierarchical approach to provide re-
liable ordered delivery of messages across interconnected rings. It allows the
design of fault-tolerant distributed systems to be simplified through the use
of reliable ordered message delivery by exploiting efficient local-area message

ordering and processor membership protocols.
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Although several reliable ordered message delivery protocols have been de-
veloped in the past, none has adequately addressed the difficult issues of main-
taining consistency in a network that partitions and remerges. The multiple-ring
protocol leverages off the previous work on reliable ordered delivery in broadcast
domains to provide message delivery across a larger network, while maintaining
consistency through partitioning and remerging of the network.

The multiple-ring protocol provides message delivery in a total order that is
consistent across the entire network. Total ordering of messages across a larger
network may delay the ordering of a message longer than the message would
have been delayed with partial ordering of messages. This longer delay is due to
the need to satisfy the additional constraints of the total order. Partial ordering
may, however, introduce inconsistencies in message delivery if partitioning and

remerging occurs.
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Conclusions and

Recommendations

This dissertation has presented a reliable ordered delivery protocol, called
Totem, for interconnected local-area networks. Each local-area network is as-
sumed to be a broadcast domain; imposed on the broadcast domain is a logical
token-passing ring. The single-ring protocol delivers messages in a total order
to the multiple-ring protocol which, in turn, delivers messages in a total order to
the next higher layer in the protocol stack. Messages are ordered by timestamp,
and messages with the same timestamp are ordered by source ring identifier. If
the timestamp and source ring identifier are the same, messages are ordered by
type. This ordering on messages provides a single consistent total order across
the entire network, even though some messages may not be delivered to all pro-
cessors. Timestamps can be used to order messages only if a processor knows
that it has received all of the preceding messsages in the order. Receipt of such
messages is guaranteed by the consecutive sequence numbers on the individual
rings and by the Guarantee Vector messages that are forwarded through the
network.

The dissertation also presents a membership algorithm for Totem that pro-
vides recovery from processor failure and network partitioning, as well as loss
of all copies of the token. The membership algorithm is integrated with the
message ordering algorithm to provide consistent membership information to

the application. The Configuration Change messages ordered by the single-ring
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protocol are used by the multiple-ring protocol to maintain consistent topology
information. Each gateway in the network maintains the current topology, and
topology changes are indicated by Topology Change messages. These messages
are delivered to the application in a consistent total order along with the other
messages. Consistent information regarding membership and topology changes
is important for the application programs since they are making decisions re-
garding which action to take based on which processors are currently in the

network when a message is delivered.

As a part of the work on Totem we have redefined the consistency require-
ments to allow separate components of a network to continue ordering messages
after partitioning and remerging. In particular, we have introduced the concept
of extended virtual synchrony, which extends the properties of virtual synchrony
defined by Birman and others [13]. Extended virtual synchrony ensures that the
processors are provided membership information in an order that is consistent

with the order of the regular messages.

An implementation of the Totem single-ring protocol on Sun IPC Sparcsta-
tions over a 10Mbit Ethernet has been completed. Five processors executing
the protocol achieved a throughput of approximately 810 KBytes/second while
passing messages containing 1 KByte of data each. This performance com-
pares favorably to Isis and Transis which achieved 151 KBytes/second and 300
KBytes/second respectively with similar equipment [5, 13].

The performance of the single-ring membership algorithm has also proven
excellent. The same five processors executing the membership algorithm re-
quired on average 40 milliseconds to reach consensus on the membership of a
token ring, to form the token ring, and to begin normal operation after de-
termining that the token was lost. With the token retransmission mechanism
activated, the time to resume normal operation was less than 20 milliseconds

on average.

An implementation of the Totem multiple-ring protocol has also been com-
pleted on Sun IPC Sparcstations over two 10Mbit Ethernets with a Sparcstation
20 acting as a gateway between the two FEthernets. Three processors on each
ring achieved a throughput of approximately 625 KBytes/second while passing

messages containing 1 KByte of data each. This compares to a throughput
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of approximately 769 KBytes/second for the single-ring with three processors.
The multiple-ring protocol adds approximately 0.28 milliseconds per message

in ordering overhead.

Although the foundation of a system has been laid by the work in this
dissertation, there are still several issues that need to be addressed to complete
the work on the Totem system. These issues include process groups, adaptive
flow control, routing, real-time guarantees, application tools and demonstration

applications.

In a distributed system, processes executing application tasks normally co-
operate in groups with each group spanning only a subset of the processors.
The difficulty lies in maintaining consistency of the message order when there
are overlapping process groups. The totally ordered message delivery provided
by the Totem protocol ensures that consistency is maintained across all process
groups and all messages. Messages are ordered network-wide, but messages des-
tined for a particular process group are only delivered to the members of that
group. Design and implementation of the Totem process group interface and

membership protocol is complete.

The Totem multiple-ring protocol is the first protocol known to provide
consistent reliable ordered delivery of messages across interconnected broadcast
domains, but its real potential will be realized when process group dependent
forwarding of messages is implemented. This will require a gateway to filter mes-
sages so that messages are forwarded only if there is a member of the destination
process group in the direction of the forwarding. The multiple-ring member-
ship/topology protocol and the process group membership protocol provide the
foundation for this filtering mechanism. The effective throughput seen by each
application should improve significantly once filtering is implemented. This is
particularly true in cases where the process groups exhibit a high degree of

locality and their messages need not be forwarded across the entire network.

The current version of Totem assumes that all messages are flooded through
the network. Other routing strategies, such as spanning trees, need to be inves-
tigated, as well as their effect on maintaining a consistent total order. This may
involve modifications to the current protocol, but will certainly benefit from the

current version. Among the interesting questions to be investigated related to
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routing are the effects of failures on maintaining routes, changing the routes
without disrupting the total order on messages, providing different routes for
messages intended for different process groups, and selection of routing strate-
gies to enhance performance.

The rudimentary flow-control mechanisms implemented in the single-ring
protocol and in the multiple-ring protocol do not adapt to changing conditions
in the network. The multiple-ring protocol flow control is designed to allow
the gateways and processors in the network to signal congestion conditions
and to avoid message loss, and has been effective at accomplishing this goal.
But, its current response of refusing all new messages from the application
processes until the congestion is relieved may be too harsh. A solution which
adaptively modifies the flow-control parameters to maintain high throughput
and low latency without congestion might provide better characteristics at the
application interface. In particular, the single-ring protocol needs to adapt to
the load offered by a gateway and to allow it to forward messages.

Although reliable ordered delivery protocols have been around for a num-
ber of years, the limited performance and correctness criteria have hampered
their usefulness to application developers. We believe that the Totem protocol
provides significant improvements in both of these areas and will ease the appli-
cation developer’s task. Application developers need, however, to rethink their
designs to utilize reliable ordered delivery protocols effectively. Relatively little
work in this area has been done, and more effort to develop interface tools and

demonstration applications is warranted.
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Appendix A

A User’s Guide for Totem

This appendix describes how to compile and run the Totem protocol. Totem
provides reliable ordered delivery of messages across interconnected broadcast
domains. Reliable ordered delivery within a broadcast domain is provided by the
single-ring protocol. The multiple-ring protocol uses the single-ring protocol to
provide reliable ordered delivery across interconnected broadcast domains. The
Totem protocol code has been designed to run either as an implementation or

as a simulation.

The Implementation

The Totem protocol has been implemented in C and has been tested on Sun
[PC Sparcstations running Sun OS 4.1.1 on a 10Mbit/s Ethernet. The code has
been compiled using gcc version 2.3.3. The code was also recently compiled on
Sun OS 4.1.3 using gcc without problems.

The current implementation uses UNIX UDP sockets to broadcast messages
and to transfer the token. The token socket numbers are deterministic based
on processor identifier and network identifier. The system clock is utilized to
track all timing information.

To allow greater flexibility, multiple rings can be run on a single Ethernet.
This allows the use of a processor with only one network interface as a gateway
by defining two virtual network interfaces on the one actual interface; each

gateway runs as a single process on a processor. We have found in practice



160 APPENDIX A. A USER’S GUIDE FOR TOTEM

that up to four rings can be run on a single Ethernet before the performance
degrades too far to be useful. This number was determined running Sun 4/1PC
processors and will probably decrease with faster processors that are better able
to saturate a single Ethernet.

The Totem protocol can be exercised either by a packet driver which gen-
erates periodic traffic or by application processes which pass messages. For a

description of the application interface routines, refer to [37].

The Simulator

The need to study the protocols in a controlled environment led to the devel-
opment of a simulation testbed. The simulator allows testing and debugging of
the protocol.

The simulator is executed by linking in simulated versions of the system clock
and system socket calls. The simulated clock halts time when an individual
processor is halted and continues when the processor continues. This allows
an individual processor to be halted in the simulator and in the system beingq
studied while the other processors wait for the halted processor.

The simulator tries to keep all the processors executing in parallel as much
as possible. This task is more difficult than would appear since the processors
do not operate in lock-step. The simulator must determine whether the current
next event for a processor is indeed the next event to be executed by the proces-
sor; the current next event may in fact be preceded by the receipt of a message
or receipt of the token, since these events are generated by outside sources.

The simulator uses a simplified state machine model of the protocol to rep-
resent events. This state machine is used to decide whether to execute the
next event for a processor. The simulator is separated into two parts: one that
models the communication medium and the other that provides the processor
interface to the communication medium. The communication medium model
maintains a global event list which registers the events for each of the proces-
sors. It also maintains the system clock and a state machine for each of the

Processors.



161

The communication medium model maintains the global clock in shared
memory. This memory can be accessed by the processors. Shared memory is
also used to implement the socket select calls. A more complete description of
the simulator can be found in [20].

The simulator also allows execution of the multiple-ring protocol. To ac-
complish this, the gateway is split across two physical processors where each
processor is running a separate ring. The two components of the gateway are
connected by a TCP socket which provides reliable message delivery between
the two portions of the gateway. The multiple-ring protocol extensions to the
simulator are described in [19].

A network monitor has been developed in Motif for use in monitoring the
activity of the Totem single-ring protocol within the simulator. The monitor
provides a graphical display of the progress of message delivery and membership

in the protocol. A more complete description of the network monitor can be

found in [33].

Compilation of Totem

The Totem code is divided into four subdirectories:
SRC - source code files

HDR - header files

OBJ - compiled object files

EXEC - protocol executables.

The make file for the Totem protocol has four targets:

totem - Totem implementation version of a processor or gateway
pm - Totem simulator version of a processor or gateway
cmm - Totem simulator for the communication medium model

xtmm - Totem simulator monitor (requires Motif to compile).
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The totem and pm executables have similar arguments. These arguments
can be specified on the command line or a configuration file. The command line
must at least contain a -c or -f argument to be valid. Defaults for most of the

rest of the arguments are supplied automatically:

-f <config file> - allows specification of the arguments in a file

-¢ <computer number> - computer number of this processor (assumed to

be unique)

-n <network num> - network to which to connect; this defaults to the local

network
-d <discard limit> - number of messages to deliver before halting execution
-e <mess each round> - maximum number of messages sent on a token visit

-w <window size> - maximum number of messages that can be sent in a

token rotation
-0 - run only the single-ring protocol
-p - use the packet driver to generate traffic
-s <message size> - size of each message if using the packet driver

-t <monitor hostname> - name of the machine running the xtmm protocol

monitor (used only with the simulator)

-u - deliver packets to the user (requires the multiple-ring protocol to be run-

ning)

The emm executable also has arguments which can be specified on the com-

mand line.
-f <events file> - file containing scheduled network partition events
-m <probability> - message reception probability

-t <probability> - token reception probability.
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Examples

Implementation

To run the Totem implementation using the packet driver to generate traffic,
type

totem -c 101 -p
To run the Totem implementation with a user application above it (the packet
driver should not be run if a user is specified), type

totem -c 200 -u
To run the Totem implementation using a configuration file, type

totem -f procl.cfg
where the file procl.cfg contains the line

srp: -¢ 101 -n 63
The Totem protocol is normally run on several processors simultaneously, and
each processor is given a unique computer number. To run several rings on a
single Ethernet, use the network number to specify a network number for each
ring. When running a gateway, the computer and network numbers must be
specified in a configuration file. To run a gateway which also contains a packet
driver, type

totem -f gwayl.cfg -g -p
where the file gwayl.cfg contains the lines

srp: -¢ 94 -n 193

srp: -¢ 35 -n 154

Simulator

To run the simulator, first start the emm. Once the emm has been started, the
individual pms can be started to simulate the actual processors on the network.
The individual processors and the emm should be run on the same physical
processor.

cmm
To run the simulator with 5% message loss, type

cmm -m 0.95
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To run partitioning scenarios using an events file, type

cmm -t part.cfg
The file part.cfg contains
<event type> <simulation time> <network> <listing of processors in each
partition>

partition: 40000000 193 (100 104 105) (101 103)

partition: 65000000 193 (100 104 101 103 105)

partition: 74000000 193 (100 101) (105) (104 103)
To run an individual processor in the simulation with the packet driver, use
the following command on the same physical processor as the one on which the
cmm s running:

pm -c 101 -p
The same arguments can be used with pm as were used in the examples. The -t
argument is, however, used only with the pm to connect to the protocol monitor.
For example, to connect a pm to a monitor running on a machine named omega,
type

pm -c 201 -t omega
For a description of how to run the simulator with multiple rings, refer to [19].
For a description of how to run the network monitor, refer to [33]. Note that
the xtmm runs without arguments and should be started before any of the pms.
The pms need to be run with the -t option to have their status displayed by the

ztmm. Each instance of the ztmm can display the status of a single emm.

Parameters in Totem

There are several parameters which can be set to customize the Totem protocol.
These parameters are all in the file HDR /ring_public.h and include everything
from frequency of status printouts to flow control parameters.
Defaults

#define COMP_NUM_DEFAULT -1

#define MEMB_SIZE_DEFAULT 9999

#define DISCARD_LIMIT_DEFAULT 100000

#define EACH_-TIME_DEFAULT 10
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#define WINDOW SIZE_DEFAULT 50
#define MESSAGE_SIZE_DEFAULT 1024
#define NETWORK_DEFAULT 63 /* Hard-coded per site */
#define MAX_DATA_PACKET 1460 /* max will be 1512 */
#define MAX_REQUESTS 90
#define MAX_PROC_RING 60
#define MAX_GWAY _RING 25
Single-Ring Parameters
Seconds between status printouts
#define SRP_DEBUG_TIMEOUT 500
Parameters for delay of token when there is no traffic on the ring.
Delay before retransmitting token
#define MAX_TKN_RETRANS_SEC 0
#define MAX_TKN_RETRANS_USEC 800000
Max delay any one processor can add to token
#define MAX_DELAY_PROC 50000
Number of rounds of no traffic before delay
#define MAX_FAST_ROUNDS 30
Limit for number of times the aru has been seen unchanged for failure to receive.
#define FAIL_RCV_LIMIT 20
Single-Ring Membership Parameters
#define JOIN_TMO_SEC 1
#define JOIN.TMO_USEC 300000
#define CONSENSUS_TMO_SEC 3
#define CONSENSUS_TMO_USEC 750000
#define TOKEN_TMO_SEC 8
#define TOKEN_TMO_USEC 500000
Multiple-Ring Parameters
#define MAX_ PACKET_GAP (2+EACH_TIME_DEFAULT)
Timeout for periodic status message
#define WAP_DEBUG_TIMEOUT 8
Maximum Numbers for Topology

Max rings in topology graph or message
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#define MAX_NODES 20
Max gateways listed in topology message
#define MAX_EDGES 40
Packet Driver Parameters
Defines the maximum number of packets in the send queue when the packet
driver is done as a multiple of window _size.
#define MAX_ QUEUE_MULTIPLE 1
Defines how often the periodic null packet driver is called
#define NULL_PERIODIC_TMO_SECS 2
#define NULL_PERIODIC_TMO_USECS 100000
Defines how often the packet driver is called
#define PKT_DRVR_TMO_SECS 5
#define PKT_DRVR_TMO_USECS 500000
Flow Control Parameters
Constants for determining upper and lower thresholds for send queue flow con-
trol.
When send queue reaches this level block site
#define MAX_SRP_SND_Q 300
When send queue gets back down to this level unblock site
#define MIN_SRP_SND_Q 250

User Applications

An application built on top of Totem must use the calls for the process group
interface defined in [37]. To build a user application on top of Totem, see the

source file ha.c (high availability) which contains the routines that must be used.



