
Totem: A Reliable Ordered Delivery Protocol

for Interconnected Local-Area Networks

Deborah A. Agarwal

UNIVERSITY OF CALIFORNIA

Santa Barbara

Totem: A Reliable Ordered Delivery Protocol

for Interconnected Local-Area Networks

A Dissertation Submitted in Partial Satisfaction

of the Requirements for the Degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Deborah A. Agarwal

Committee in charge:

Professor Louise E. Moser, Chairperson

Professor P. M. Melliar-Smith

Professor Roger Wood

Professor Amr El Abbadi

August 1994

The Dissertation of Deborah A. Agarwal

is approved:

Committee Chairperson

August 1994

iii

29 August, 1994

c

Copyright by

Deborah A. Agarwal

1994

iv

ACKNOWLEDGMENTS

The road to completing my doctorate has been a long one with a multitude

of hazards and turno�s along the way. I have many people to thank for helping

me down that road.

Firstly, I would like to thank my advisors Dr. Moser and Dr. Melliar-

Smith for their guidance, support and roadmaps. I would also like to thank my

committee members for their time and patience.

The students in my research lab have been excellent passengers and can ride

with me any time. I particularly want to thank Marcos and Ravi for navigating

and for sharing in the driving. I appreciate the companionship provided by

Amitabha, Ramki, George, and Amy on the road. There will always be room

in the car for them.

Thanks also to Hugh, Paul, Yair, Michael, Ravi, Tom, Amy and Wes for

the mechanical support, supercharging the engine and detailing the car. People

stop and stare in every town.

I appreciate the time and e�ort of the people I met at Lawrence Berkeley

Laboratory during my internship there. In particular, I would like to thank

Sally and Carol. It was a most excellent adventure.

The National Park Service receives my special gratitude for providing the

much needed rest stops along the highway.

Most importantly, I would like to thank my friends particularly Kathy and

Ed who stood by me through thick and thin and even pushed the car when it

got stuck in the mud. A roadtrip will never be the same without them.

Last but not least, I would like to thank my family for keeping me between

the lines.

This work was supported by the National Science Foundation, Grant No. NCR-

9016361 and by the Advanced Research Projects Agency, Contract No. N00174-93-

K-0097. Financial support for this research was also provided by the Dissertation

Year Fellowship and the Graduate Research Mentorship Program at the University

of California, Santa Barbara.

v

VITA

1985 B.S., Mechanical Engineering,

Purdue University.

1985-88 Project Engineer, General Motors Technical Center

Warren, Michigan.

1988-90 Teaching Assistant, Department of Mechanical Engineering

Department of Electrical and Computer Engineering,

University of California, Santa Barbara.

1991 M.S., Electrical and Computer Engineering

University of California, Santa Barbara.

1992 Lecturer, Department of Electrical and Computer Engineering,

University of California, Santa Barbara.

1989-94 Researcher, Department of Electrical and Computer Engineering,

University of California, Santa Barbara.

1993-94 Instructor, Technical Research Associates,

Camarillo, California.

1993-94 President's Dissertation Year Fellowship,

University of California.

PUBLICATIONS

� \The Totem Multiple-Ring Ordering and Topology Maintenance Proto-

col," with L. E. Moser, P. M. Melliar-Smith and R. Budhia, in prepara-

tion.

� \Reliable Ordered Delivery in Interconnected Local-Area Networks," with

L. E. Moser, P. M. Melliar-Smith and R. Budhia, submitted for publica-

tion.

� \The Totem Single-Ring Ordering and Membership Protocol," with Y.

Amir, L. E. Moser, P. M. Melliar-Smith and P. Ciarfella, submitted for

publication.

vii

� \The Totem Protocol Development Environment," with P. Ciarfella, L.

E. Moser and P. M. Melliar-Smith, Proceedings of the 1994 International

Conference on Network Protocols, Boston, MA (October 1994), 168-177.

� \Extended Virtual Synchrony," with L. E. Moser, Y. Amir and P. M.

Melliar-Smith, Proceedings of the 14th IEEE International Conference on

Distributed Computing Systems, Poznan, Poland (June 1994), 56-65.

� \Debugging Internet Multicast," with S. Floyd, Proceedings of the 22nd

ACM Computer Science Conference, Phoenix, AZ (March 1994), 22-29.

� \Fast Message Ordering and Membership Using a Logical Token-Passing

Ring," with Y. Amir, L. E. Moser, P. M. Melliar-Smith and P. Ciarfella,

Proceedings of the 13th International Conference on Distributed Comput-

ing Systems, Pittsburgh, PA (May 1993), 551-560.

� \Totem: A Protocol for Message Ordering in a Wide-Area Network,"

with P. M. Melliar-Smith and L. E. Moser, Proceedings of the First In-

ternational Conference on Computer Communications and Networks, San

Diego, CA (June 1992), 1-5.

� \A Graphical Interface for Analysis of Communication Protocols," with

L. E. Moser, Proceedings of the 20th ACM Computer Science Conference,

Kansas City, MO (March 1992), 149-156.

� \Ring-Based Ordering Protocols," with P. M. Melliar-Smith and L. E.

Moser, Proceedings of the International Conference on Information Engi-

neering, Singapore (December 1991), 882-891.

FIELDS OF STUDY

Major Field: Computer Engineering

Studies in Fault-Tolerant Distributed Systems

Professors L. E. Moser and P. M. Melliar-Smith

viii

ABSTRACT

Totem: A Reliable Ordered Delivery Protocol

for Interconnected Local-Area Networks

by

Deborah A. Agarwal

Many recent computer applications have been designed to execute in a dis-

tributed computer system because a distributed system has the potential to

provide high availability and excellent performance at a low price. However,

due to the need to coordinate tasks and share data among processors, pro-

gramming the application is often di�cult and, thus, this potential is not often

realized. A communication protocol that provides reliable totally ordered de-

livery of messages in a distributed system can greatly simplify the application

programmer's task.

This dissertation describes a reliable delivery and total ordering protocol,

called Totem, that models a communication network as broadcast domains con-

nected by gateways. Processors within a broadcast domain communicate by

broadcasting messages. Access to the communication medium is controlled by

a token, and reliable delivery is achieved by the use of sequence numbers in

messages. Gateways forward messages between rings. Timestamps in messages

provide totally ordered message delivery that respects causality and is consistent

across the entire network.

A membership algorithm provides recovery from processor failure and net-

work partitioning, as well as loss of all copies of the token. When a failure

occurs, the membership algorithm forms a new membership and regenerates

the token so that normal operation can resume. The gateways maintain net-

work topology information that is updated when a membership change occurs.

Changes in the membership and in the topology are provided to the application

in order with respect to the other messages in the system.

ix

x

Contents

1 Introduction 1

1.1 Motivation : 1

1.2 The Totem Protocol : 3

1.3 The Single-Ring Protocol : 4

1.4 The Multiple-Ring Protocol : 6

1.5 Related Issues : 7

2 Background 9

2.1 TCP : 11

2.2 Chang and Maxemchuk : 11

2.3 Isis : 12

2.4 Trans and Total : 14

2.5 Transis : 15

2.6 Psync : 15

2.7 TPM : 16

2.8 The Amoeba System : 16

2.9 Summary : 17

3 The Model and Services 19

3.1 Environment : 19

3.2 Fault Model : 21

3.3 Consensus : 21

3.4 Membership Services : 22

3.5 Reliable Ordered Delivery Services : : : : : : : : : : : : : : : : 22

xi

4 The Single-Ring Protocol 29

4.1 The Total Ordering Algorithm : : : : : : : : : : : : : : : : : : : 29

4.2 The Membership Algorithm : 34

4.3 The Recovery Algorithm : 52

4.4 Performance : 62

4.5 Proof of Correctness : 70

4.6 Summary : 82

5 The Multiple-Ring Protocol 83

5.1 The Total Ordering Algorithm : : : : : : : : : : : : : : : : : : : 84

5.2 The Topology Maintenance Algorithm : : : : : : : : : : : : : : 94

5.3 Performance : 121

5.4 Network Con�guration : 128

5.5 Proof of Correctness : 131

5.6 Summary : 147

6 Conclusions and Recommendations 149

A A User's Guide for Totem 159

xii

List of Figures

1.1 The Totem system hierarchy : 4

4.1 Algorithm executed on receipt of a token : : : : : : : : : : : : : 33

4.2 Algorithm executed on receipt of a regular message : : : : : : : 34

4.3 The �nite state machine for the membership algorithm. : : : : : 35

4.4 Algorithm executed on membership event in Operational state : 41

4.5 Algorithm executed to shift to Gather state : : : : : : : : : : : 43

4.6 Algorithm executed in Gather state : : : : : : : : : : : : : : : : 44

4.7 Algorithm executed in Gather state (cont.) : : : : : : : : : : : : 45

4.8 Algorithm executed on reaching consensus : : : : : : : : : : : : 48

4.9 Algorithm executed to shift to Commit state : : : : : : : : : : : 49

4.10 Algorithm executed in Commit state : : : : : : : : : : : : : : : 50

4.11 Algorithm executed to shift to Recover state : : : : : : : : : : : 51

4.12 Algorithm executed in Recover state : : : : : : : : : : : : : : : 53

4.13 Algorithm executed in Recover state (cont.) : : : : : : : : : : : 54

4.14 Algorithm executed to install a new ring : : : : : : : : : : : : : 56

4.15 Example of transitional con�gurations : : : : : : : : : : : : : : 60

4.16 Regular and transitional con�gurations : : : : : : : : : : : : : : 61

4.17 Flow control algorithm : 65

4.18 Number of messages ordered per second : : : : : : : : : : : : : 67

4.19 Ethernet utilization : 68

4.20 The mean token rotation time and latency to message delivery : 69

5.1 Algorithm executed on receipt of a regular message : : : : : : : 88

5.2 Gateway message path : 90

5.3 Algorithm executed to deliver messages : : : : : : : : : : : : : : 91

xiii

xiv LIST OF FIGURES

5.4 Algorithm executed on receipt of a Guarantee Vector message : 92

5.5 Example of message ordering : 94

5.6 Algorithm executed on receipt of a Con�guration Change message103

5.7 Algorithm executed to deliver a Con�guration Change message : 106

5.8 Algorithm executed on receipt of a Network Topology message : 107

5.9 Algorithm executed on receipt of a Topology Change message : 108

5.10 Algorithm executed on delivery of a Topology Change message : 109

5.11 Algorithm executed to generate a Transitional Con�guration

Change message : 114

5.12 Algorithm executed on receipt of a Transitional Con�guration

Change message : 115

5.13 Algorithm executed to deliver a Transitional Topology Change

message : 116

5.14 Example of partitioning of network : : : : : : : : : : : : : : : : 117

5.15 An example of deletion of rings : : : : : : : : : : : : : : : : : : 119

5.16 Example guarantee vectors : 121

5.17 Flow control algorithm for queue over
ow : : : : : : : : : : : : 124

5.18 Flow control algorithm executed when queue level reduces : : : 124

5.19 Algorithm executed on receipt of token : : : : : : : : : : : : : : 125

5.20 A robust sixteen node graph : 128

5.21 E�ect on spanning tree height of edge deletion : : : : : : : : : : 129

5.22 Number of connected graphs as edges are deleted : : : : : : : : 130

5.23 Size of disconnected graph component : : : : : : : : : : : : : : 131

Chapter 1

Introduction

1.1 Motivation

Many recent computer applications have been designed to execute in a dis-

tributed computer system because a distributed system has the potential to

provide high availability and excellent performance at a low price. Applica-

tion tasks can be divided among the processors in the system, and data can be

replicated to protect against failures. However, due to the di�culty of coordi-

nating tasks and sharing data among processors, the potential provided by a

distributed system is not often realized.

Traditionally, distributed systems have been designed to be synchronous,

because synchronous systems allow simple consensus protocols to be used to

maintain the consistency of replicated data in the presence of faults. The Mars

system provides one example of a synchronous distributed system that has been

built [34, 35]. Unfortunately, large systems are necessarily partially or entirely

asynchronous. Existing protocols to maintain consistency in such systems are in-

e�cient. A reliable ordered delivery protocol can provide e�cient fault-tolerant

consensus and simplify the application programmer's task.

Applications developed for distributed systems include process control sys-

tems, database systems, and cooperative work tools. One application is man-

ufacturing process control. Modern factories consist of automated workcells

2 CHAPTER 1. INTRODUCTION

connected by conveyors or automated guided vehicles (AGVs). Each workcell

is capable of performing several tasks and each part visits workcells as needed

to complete the processing. The individual tasks performed by a workcell are

controlled by one or more computers in the workcell. A scheduling system de-

termines how parts should be scheduled based on the availability of workcells

and raw materials. The computers in the workcells, the conveyor or AGVs, and

the scheduler must coordinate their activities by passing messages on a commu-

nication network. The distributed sites can coordinate tasks more easily if the

communication protocol provides reliable ordered delivery of messages.

Another distributed system application, a multiparty whiteboard, allows

multiple users to hold a meeting and interact on a virtual whiteboard. The

whiteboard, available on the Internet, uses unreliable multicast packets to com-

municate between sites running the whiteboard. The unreliable multicast is

an experimental capability recently added to the Internet [15]. Coherent in-

teraction on the shared whiteboard requires reliable ordered communication of

changes to the whiteboard.

Database applications also use distributed systems to provide fault tolerance

by allowing redundant processing and replicas of the data. Replicated databases

typically employ a client/server paradigm in which multiple servers serve a

client and each of the servers holds a copy of the data. When the data are

updated, a copy of the update message must be sent to each of the servers. These

update messages must be processed in a consistent serializable order; otherwise,

inconsistencies in the data can arise. It is particularly critical that all of the

servers commit a transaction, or none do. Existing replicated databases use a

two-phase commit protocol that blocks if any server fails. A reliable ordered

multicast protocol has the potential to achieve reliable commit for fault-tolerant

distributed databases that very seldom blocks.

Although it is impossible to provide a reliable ordered delivery that is guar-

anteed to terminate in a purely asynchronous system (see [45] for one proof),

several protocols have been developed for reliable ordered delivery in a partially

asynchronous system that have asymptotic termination properties [7, 8, 13, 49].

1.2. THE TOTEM PROTOCOL 3

1.2 The Totem Protocol

The main contribution of this dissertation is a reliable delivery and total order-

ing protocol, called Totem, that models a communication network as broadcast

domains connected by gateways. Processors within a broadcast domain commu-

nicate by broadcasting messages. On each broadcast domain is superimposed a

logical token-passing ring. Access to the broadcast medium is controlled by a

token-passing protocol, and reliable delivery is achieved by the use of sequence

numbers in messages. Gateways forward messages between rings. Timestamps

in messages provide totally ordered message delivery that respects causality and

is consistent across all rings.

Reliable ordered message delivery protocols can provide di�erent levels of

message ordering services. We categorize these levels as �fo, partial and total

ordering. The �fo level of service provides ordered delivery of messages between

any pair of processors but does not place any restrictions on the interleaving of

the messages from two di�erent sites at a destination. The partial order service

is usually based on the causal order de�ned by Lamport [36] which ensures that

if a messagem can have causally a�ected another message m

0

, then it is ordered

before that message. The total order is a partial order in which every message

is ordered with respect to every other message.

In the past, the protocol e�ciency decreased going from delivering messages

in partial order to delivering messages in total order. This was a result of

the perceived need to construct the total order from the partial order. The

objective of the Totem protocol is to deliver totally ordered messages e�ciently,

thus making partial ordering unnecessary.

In Totem, messages are broadcast with enough information to establish their

position in the total order immediately, and token transfer is not delayed except

as needed for
ow control. This eliminates the need for acknowledgments of

individual messages by each of the processors. The Totem protocol provides

virtual synchrony [13] and introduces extended virtual synchrony [44]. Extended

virtual synchrony extends the concept of virtual synchrony to systems in which

the components of a partitioned system must continue to operate and may

subsequently remerge, and also to systems in which failed processors can be

4 CHAPTER 1. INTRODUCTION

Local-Area Network

Multiple-Ring Protocol

Single-Ring Protocol

Process Group Protocol

Application

Figure 1.1: The Totem system hierarchy.

repaired and can rejoin the system with stable storage intact. In extended

virtual synchrony, two processors may deliver di�erent sets of messages, when

one of them has failed or when they are members of di�erent components, but

they must deliver messages consistently.

The Totem system is composed of a hierarchy of protocols at each processor

and provides reliable ordered delivery of messages network wide (see Figure 1.1).

The bottom layer is the local-area network itself which provides message pass-

ing between processors. The single-ring protocol provides reliable delivery and

ordering of messages within the broadcast domain. The multiple-ring protocol

provides reliable delivery and ordering across the entire network. The process

group interface to the application is described in [37].

1.3 The Single-Ring Protocol

The single-ring protocol uses a logical token ring to provide reliable ordered

delivery of messages to processors in a broadcast domain. The token circulates

around the ring as a point-to-point message, and a processor must be in pos-

session of the token to broadcast a message to the processors on the ring. Each

message header contains a sequence number derived from a sequence number

�eld in the token. The sequence number �eld is incremented as each message

is broadcast, and the token passes from processor to processor as it circulates

1.3. THE SINGLE-RING PROTOCOL 5

around the ring, thereby providing a single sequence of monotonically increasing

sequence numbers for the messages broadcast on the ring.

Processors recognize missed messages by detecting gaps in the sequence num-

bers. When a processor receives the token, it requests retransmissions by insert-

ing the sequence numbers of missing messages into the token's retransmission

request �eld. On receiving the token, a processor that possesses a requested

message retransmits the message and removes the request from the retransmis-

sion request �eld in the token. In this way, the single-ring protocol provides the

local mechanism for reliable ordered delivery of messages.

On the local ring, a message can be totally ordered as soon as it and all prior

messages, as de�ned by the sequence numbers, have been received. A message

can be discarded when it has been received by all processors on the ring.

To provide fault-tolerance, the single-ring protocol is integrated with a mem-

bership algorithm that provides recovery from token loss, from processor failure

and restart, and from ring partitioning and remerging. A time-out determines

token loss, processor failure, and ring partitioning when the token is passed to a

failed or disconnected processor, resulting in loss of the token. New or restarted

processors and partitioned rings that have recently regained access to the local-

area network are detected by the appearance of messages on the communication

medium from processors that are not members of the current ring.

The membership algorithm is activated by a token loss timeout or receipt of

a message from a processor that is not a member of the current membership.

The membership algorithm contains four states. The �rst state is the Gather

state in which the processors attempt to obtain agreement on the membership

of the new token ring. If they agree on the membership, they proceed to the

Commit state where they establish the ring identi�er and rotation pattern for

the new token. After the new token has begun circulating, in the Recover

state the processors deliver old messages from the previous ring(s) to ensure

extended virtual synchrony and then proceed to the normal Operational state.

The membership algorithm is a signi�cantly modi�ed version of the algorithm

developed for Transis [6].

A new or restarting processor starts in the Gather state. Other processors

on the same local-area network also proceed to the Gather state and the mem-

6 CHAPTER 1. INTRODUCTION

bership algorithm normally merges the new processor and the existing ring into

a single new ring. In the base case, the processor forms a ring containing only

itself.

Each single-ring membership change is delineated by two Con�guration

Change messages which are ordered with respect to the messages on the ring.

The �rst Con�guration Change message lists the processors that are in the in-

tersection of the old and new membership. Residual messages from the old

con�guration that cannot be delivered in the old con�guration are delivered

within this con�guration. The second Con�guration Change message marks

the beginning of the new con�guration formed by the membership algorithm

and lists the membership of the new con�guration.

1.4 The Multiple-Ring Protocol

The multiple-ring protocol is executed by each processor and gateway. A gate-

way interconnects two broadcast domains, and is responsible for forwarding

messages between rings, maintaining network topology information, and dis-

seminating local-area failure and join information. Messages are timestamped

on generation using Lamport clocks [36] to preserve causality.

As the single-ring protocol delivers messages in total order to a gateway, the

gateway forwards the messages in order onto the other ring. When forwarded,

a message is given a new sequence number appropriate to the new ring but

retains its original timestamp. The single-ring protocol and forwarding mecha-

nisms combine to ensure that messages originating on any one ring are forwarded

throughout the network in order. When a membership change occurs on a ring,

the resulting Con�guration Change messages are forwarded as regular messages.

When a processor receives a Con�guration Change message, it begins ordering

messages received from the new ring. The messages that were originated be-

fore the membership change precede the Con�guration Change message, and

the messages originating after the membership change follow the Con�guration

Change message.

Since messages are forwarded through the network in order, a processor can

determine which messages have been forwarded by observing the messages on

1.5. RELATED ISSUES 7

its own ring. A processor is guaranteed to have received all messages preceding

a message generated on the message's source ring. By keeping track of a times-

tamp for each ring in the network, a processor can determine a network-wide

total order.

Each gateway maintains a view of the network topology. When a Con�gu-

ration Change message is received, a gateway notes the change in its topology

information. When a Con�guration Change message for a locally attached ring

is the message with the lowest timestamp, each gateway on the ring sends a

Network Topology message indicating its current topology information. The

Network Topology messages are necessary to ensure that all of the gateways on

the new ring start with the same view of the topology of the network. A Topol-

ogy Change message is sent by a gateway after receipt of Network Topology

messages or when a gateway determines that a ring has become disconnected

from the topology. Topology Change messages forwarded through the network

are used by processors and gateways to learn of the changes in the network

topology due to a con�guration change.

1.5 Related Issues

Although the Totem protocol is designed to continue despite network parti-

tions, reliable delivery of messages can be provided only between processors

in the same partition. Thus, it is desirable to design the network to increase

the probability that the network will remain connected despite failures. If we

represent the network as a graph where each local-area network is a node and

each gateway is an edge, then network connectivity can be analyzed as a graph

partitioning problem.

We have investigated graphs of networks that were constructed by adding

random edges to the graph and robust graphs that were constructed to be

resilient to edge deletion [41]. The data indicate that, as gateways fail, parti-

tioning of the network is of more concern than the increased length of the routes

in the network.

To provide e�cient broadcast communication, e�ective
ow control is re-

quired. Broadcast communication can proceed only at the rate of the slowest

8 CHAPTER 1. INTRODUCTION

processor or communication link. If messages are broadcast at a higher rate

for an extended period of time, the slowest participant will experience bu�er

over
ow and begin to drop messages. This results in higher retransmission rates

and lower throughput.

The single-ring protocol contains a simple token-based
ow-control mecha-

nism which provides good performance. Throughput is higher than achieved

by other algorithms and comparable to that achieved by TCP/IP for point-

to-point communication. The multiple-ring protocol introduces back-pressure

mechanisms across the network to alleviate congestion. Any processor or gate-

way that is running out of bu�er space attempts to block generation of new

messages throughout the network for long enough to free bu�er space.

The Totem single-ring and multiple-ring protocols have been implemented.

The e�ects of the network layout on fault-tolerance have also been studied

through simulations.

The remainder of this dissertation is organized as follows. The related work

is presented and discussed in Chapter 2. The environment in which Totem

operates and the services provided by Totem are described in Chapter 3. A

detailed description of the single-ring protocol can be found in Chapter 4. The

multiple-ring protocol and the issues related to interconnecting broadcast do-

mains are covered in Chapter 5. Conclusions and recommendations are given

in Chapter 6. Finally, Appendix A contains a guide to compiling and using the

Totem implementation and simulation.

Chapter 2

Background

The Totem protocol is designed to provide message passing support for dis-

tributed applications. One of the target applications, distributed databases, is

primarily concerned with consistent updates of replicated data and consistent

operation during partitioning of the system. Replica control protocols orches-

trate the reading and writing of copies of a data item in a distributed database.

The task of designing a replica control protocol is particularly di�cult if the

system might partition leaving some of the copies inaccessible. Several replica

control protocols have been developed to support distributed databases on net-

works that might partition [24, 26, 48]. All of these protocols would bene�t

from having reliable message delivery, and some of these protocols assume that

reliable ordered message delivery is already provided by a communication layer.

Some replica control protocols also assume that process failure and partition

detection are provided by underlying failure detectors [48, 53].

Algorithms have been developed for maintenance of replicated data in a

distributed database, such as [2, 3, 4], that implement mechanisms for causal

ordering of messages. If the message order provided by the reliable ordered

delivery protocol incorporates causality constraints, these database algorithms

can be built using relatively simple application level mechanisms.

Not all distributed application designers accept that totally ordered delivery

of messages to a database will simplify the task of maintaining consistency

[18]. Some application designers would argue that reliable ordered delivery

protocols are inappropriate because, external and semantic causality constraints

10 CHAPTER 2. BACKGROUND

are not represented in the message order, the database transaction model is not

directly implemented, and the protocols are ine�cient. This view is relatively

narrow since reliable ordered delivery does not preclude the inclusion of external

and semantic ordering constraints in the messages; it does, however, eliminate

the need to include causality constraints between messages. Although reliable

ordered delivery does not directly implement the database transaction model,

it has been used successfully to support this model and many recent reliable

ordered delivery protocols provide high throughput and low latency of message

delivery [11].

The need for an underlying protocol to provide failure detection to the

database is apparent; the current database solutions to replica control tend

to be complicated and are not often implemented. Reliable ordered delivery

protocols that can operate despite network partitions should ease the task of

designing and implementing replica control protocols. Since the Totem proto-

col provides noti�cation of membership changes in order with respect to the

messages in the system, the application can focus on other issues [55].

Totem is not the �rst protocol to be developed in support of distributed ap-

plications. Several other protocols provide fault-tolerance and reliable ordered

delivery of messages. Many of these protocols have been developed to oper-

ate in a synchronous system [22, 34, 35]. Synchronous protocols assume that

the maximumprocessing and communication times can be predicted. Such con-

straints on processing and communication times are needed by real-time systems

with very short deadlines. However, timing constraints can be unnecessarily re-

strictive and unrealistic. Operating systems such as Unix have unpredictable

response times, and communication involves bu�ering of messages which can

cause unpredictable delays.

Reliable ordered delivery protocols require consensus decisions for message

ordering and membership decisions; unfortunately, the impossibility of reach-

ing consensus in an asynchronous distributed system has been shown in [28].

Additional proofs are given in [27, 39] and results indicating what is achiev-

able appear in [9]. Necessary and su�cient conditions for broadcast consensus

protocols are given in [46].

2.1. TCP 11

Some protocols for reaching consensus in asynchronous systems are asymp-

totic in the sense that the probability of reaching consensus asymptotically ap-

proaches one as time increases. An example of an asymptotic atomic broadcast

protocol can be found in [38].

Much of the di�culty in reaching consensus in an asynchronous system is

caused by the di�culty of distinguishing between a failed processor and a slow

processor. Many protocols use timeouts to detect failure; these failure detec-

tors are termed \unreliable" because they may sometimes eliminate working

processors. Chandra and Toueg investigate the properties of unreliable failure

detectors in [16].

Despite the di�culty of designing communication protocols for asynchronous

environments, the bene�ts of not assuming an upper bound on communication

and processing time generally outweigh the disadvantages. The following pro-

tocols were all designed to operate in asynchronous environments.

2.1 TCP

The most widely used protocol for reliable ordered delivery today is the Internet

TCP protocol. The TCP protocol provides reliable ordered delivery of packets

between a pair of processors; it does not order messages arriving from di�erent

sites. A sliding window mechanism provides
ow control and packet ordering

and recovery. Each packet is acknowledged by the sender upon receipt allowing

additional packets to be sent. Sequence numbers on the packets allow ordering

and recognition of lost packets. A group multicast to N processes using TCP

requires 2N packets: N transmissions of the packet (one for each destination)

and N acknowledgments. Although multicast services are now available on the

Internet, these services provide only unreliable delivery and do not provide for

ordering of packets consistently across an entire multicast group.

2.2 Chang and Maxemchuk

The Chang and Maxemchuk protocol [17] provides a total order on messages by

using a token-passing protocol. This protocol does not use the token to restrict

12 CHAPTER 2. BACKGROUND

access to the medium. Instead, all processors can broadcast messages at any

time, and the processor in possession of the token broadcasts acknowledgments

that determine the total order of messages. The token site delays acknowledg-

ment of new messages until it has received all messages already acknowledged by

the previous token holders. In a network subject to k or fewer failures, messages

can be discarded after the token has visited k+1 sites. The acknowledgments

in this protocol are additional broadcast messages that increase the message

tra�c on the network.

The Chang and Maxemchuk protocol does not provide
ow control because

the broadcasting of new messages is not restricted. It does provide a membership

mechanism to recover from token loss, but the membership algorithm is not

resilient to further failures during recon�guration. The protocol will normally

broadcast two messages for each message ordered in a lossless system if the token

is transferred with each acknowledgment. This overhead can be reduced in high-

load situations by grouping several acknowledgments into a single message or

by passing the token via the acknowledgment.

2.3 Isis

The Isis distributed programming system [12, 13] has been used in a wide variety

of applications to provide partial and total ordering on messages within groups

of processes. Four types of broadcast messages are allowed: GBCAST (group

broadcast), ABCAST (atomic total order broadcast), CBCAST (causal partial

order broadcast), and BCAST (unordered broadcast).

Isis has been upgraded recently with new protocols to enhance its perfor-

mance. The current version of Isis includes timestamp vectors in messages

multicast within a group to preserve causality relationships. Each processor

maintains a timestamp vector which has an entry for each member of the group.

The entries indicate which messages have been delivered and sent by this proces-

sor. When sending a message, a processor increments the value in its position of

the timestamp vector and then appends the timestamp vector to the outgoing

message. These timestamp vectors are then used to determine causal ordering

of messages within a group. Causality between groups is maintained by passing

2.3. ISIS 13

current versions of timestamp vectors of other groups as needed. This mecha-

nism does not, however, ensure proper ordering of messages connected by causal

chains through series of process groups [13].

The total order on messages within a group is determined using a protocol

similar to that of Chang and Maxemchuk. A token is circulated around the

group, and the current holder of the token imposes an order on concurrent

messages in the partial order for the group. The token holder then sends a

message indicating the results of its ordering decision to the other processors.

ABCAST messages sent to multiple process groups are not guaranteed to be

ordered the same since the total ordering is only within a process group.

The Isis protocol also provides in the ABCAST and CBCAST broadcast

functions the ability for the sender to request a \stability" for the message. A

processor delays delivery of a message until the requested number of processors

have acknowledged receipt of the message. If a processor is unable to achieve

the requested level of stability due to a membership change, the message is

delivered and mechanisms to determine the known stability are provided.

Group membership changes are implemented using GBCAST which provides

a system-wide total order; the ABCAST mechanism only provides message or-

dering within a group. A GBCAST message causes a temporary halt to message

ordering and a
ush of all pending messages to ensure system-wide ordering con-

sistency for the message. Each new group membership is referred to as a view,

and the current view is appended to the timestamp vector in each message.

In the interest of higher performance, the Isis protocols were designed for a

network in which partitioning and rejoining of a processor with stable storage

after failure are not allowed. These restrictions in the model are required for

Isis to maintain consistency, because the ABCAST ordering mechanism allows

a partitioned or failed processor to order and deliver messages in a di�erent

order than processors in the rest of the system. Such ordering inconsistencies

can lead to alternate decisions and can become a problem if the components

of the partition later remerge. A processor that rejoins the membership after

having been removed is considered a new processor and is forced to obtain state

information from the other processors. The Isis membership mechanisms are

described in [51].

14 CHAPTER 2. BACKGROUND

The Isis system includes a comprehensive suite of message ordering and pro-

cess group membership services. A key concept introduced in the Isis protocol

is virtual synchrony. Virtual synchrony ensures that, if two processors are mem-

bers of the same two consecutive con�gurations, then they will deliver the same

set of messages in the �rst con�guration. This level of consistency, although

adequate in a network without partitioning and remerging, must be extended

and further restrictions applied when partitioning is considered. This topic is

discussed further in Chapter 3 of this dissertation.

2.4 Trans and Total

The Trans and Total protocols [40, 42, 45, 47] provide partial and total or-

ders on messages broadcast on a local-area network. The Trans protocol uses

positive and negative acknowledgments piggybacked on messages to create the

partial order. A processor uses transitivity of acknowledgments to reduce the

number of acknowledgments in a message; the processor places, in its next mes-

sage, positive acknowledgments for messages it has received if the processor

has not already received an acknowledgment for the message from another pro-

cessor. The processor includes negative acknowledgments for messages that it

has failed to receive. The partial order of the messages is computed from the

acknowledgments requiring a graph processing operation.

The Total protocol converts the partial order created by the Trans protocol

into a total order and involves no further exchange of messages. The Total

protocol is rare in that it is fault tolerant and can continue to order messages

without detecting failures; most other protocols block on processor failure. Be-

cause the Total protocol is fault tolerant, its membership protocol can be built

on top of the ordering algorithm. Failure of a processor is determined by the pro-

cessor's failure to broadcast or failure to receive as determined by the messages

in the total order; the removal of the processor requires no additional messages.

Several alternative algorithms are provided for addition of processors.

2.5. TRANSIS 15

2.5 Transis

Reliable ordered delivery of messages and membership are provided in Transis by

the Lansis and Toto [6, 7, 25] protocols. The Lansis protocol is used to provide

delivery of messages in a partial order and is derived from the Trans protocol.

The primary di�erence between Lansis and Trans is in the acknowledgments.

A processor executing the Lansis protocol waits to acknowledge messages until

they can be delivered in causal order. The advantage of waiting to acknowledge

a message is that the causal order is directly de�ned by the acknowledgments.

A processor executing the Toto protocol computes the total order of the

messages using the underlying causal order generated within Lansis with ex-

change of additional messages for majority voting on the message order. Since

Toto is not fault-tolerant, failure detection and recon�guration are provided by

mechanisms within the Lansis protocol. Failure detection is by timeout, and

recon�guration requires several rounds of message passing to reach consensus

on the new membership. Messages can be broadcast during recon�guration and

the causal order can be constructed, but the Toto total ordering protocol is

stopped.

2.6 Psync

The Psync protocol [49] provides a partial order on messages broadcast between

processes participating in a group. Each processor maintains a context graph

that determines the partial order. When a message is broadcast, its header

contains information de�ning the messages that it follows in the context graph.

The context graph information contained in the message headers is similar to

the acknowledgments used in Lansis. A processor executing Psync sends re-

transmission requests as separate messages. Gaps in the partial order due to

failures are handled by discarding messages that follow a missing message in

the context graph.

The Psync protocol has been implemented as part of the x-kernel operating

system [29, 30]. The responsibility for providing a total order and for consistency

between groups is left to the application program. Several services such as

membership have been added to the Psync protocol [43].

16 CHAPTER 2. BACKGROUND

2.7 TPM

The token-passing multicast protocol (TPM) uses a token to provide reliable

ordered multicast communication within process groups [50]. A processor can

only broadcast a message if it is in possession of the token. Each message is given

a sequence number derived from the token. TPM proceeds by �rst circulating

the token to send a set of messages. The token is then used to determine which

messages of the set processors are missing. Missed messages are retransmitted

until the set of messages can be delivered. During this time, processors are

allowed to start sending a new set of messages which will be considered for

delivery after the current set.

TPM provides a mechanism for recovery from failures. If the network par-

titons, the component with the majority of the members of the group is the

only component that is allowed to operate. Token regeneration is carried out

by iteratively trying to pass the token to the members of the old token list until

a processor accepts the token. Token regeneration is successful only if the new

token list has a majority of the group members.

2.8 The Amoeba System

In Amoeba [32], messages are sent point-to-point to a central coordinator that

assigns the message a sequence number and then broadcasts the message. A pro-

cess acknowledges receipt of messages by placing the highest message sequence

number received without gaps in its next message. The processes are organized

into groups and messages are broadcast within a group. Each group has its

own independent central site. The Amoeba system does not order messages for

di�erent groups with respect to each other.

In the Amoeba approach, each reliable broadcast requires a minumumof one

point-to-point message and one broadcast message for each broadcast message.

It has potential to reduce the storage requirements across the system as a whole

since the central coordinator is the only site responsible for keeping copies of

messages until the broadcast becomes stable.

2.9. SUMMARY 17

2.9 Summary

Although many reliable ordered delivery protocols have been developed, many

of these protocols have high overhead. In TCP each point-to-point conversa-

tion has its own sliding window and acknowledgments. All of the causal order

protocols have to maintain the partial order information. These overheads,

although reasonable in a local-area network, become a dominant factor when

several local-area networks are participating in the protocol.

A problem that has been identi�ed by the database community for dis-

tributed applications is partitioning. The only prior system that has begun to

address the problem of partitioning and remerging of the network is the Transis

system. The other protocols either assume that partitioning does not occur or

only allow a primary component to continue and do not allow remerging unless

the processors rejoin without stable storage intact.

Message throughput of a reliable delivery protocol is seriously degraded as re-

transmissions increase; retransmissions require bandwidth and processing time.

Despite this, many protocols allow unrestricted access to the communication

medium, and use external
ow control mechanisms. These external mecha-

nisms depend on heuristics to determine the current tra�c load and are often

inaccurate, leading to input bu�er over
ow, message loss and throughput degra-

dation.

The Totem system has been designed speci�cally to address the above men-

tioned problems.

18 CHAPTER 2. BACKGROUND

Chapter 3

The Model and Services

3.1 Environment

We model a network as a �nite number of broadcast domains that are inter-

connected by gateways. A broadcast domain consists of a �nite number of

processors that communicate by broadcasting messages; each processor has a

unique identi�er. The broadcast domain has the following characteristics.

A broadcast message is received immediately (without excessive delay) or

not at all by each processor or gateway in the broadcast domain, i.e. it may be

received by only a subset of the processors or gateways. A processor or gateway

receives all of its own broadcast messages. Messages can be rebroadcast to

achieve reliable delivery.

Imposed on the broadcast domain is a logical token-passing ring. Each ring

has a representative, chosen deterministically from the membership when the

ring is formed, that initiates the token for the ring, and an identi�er that consists

of a ring sequence number and the identi�er of the representative. To ensure

that ring sequence numbers and hence ring identi�ers are unique, each processor

stores its ring sequence number in stable storage.

The gateways interconnecting the broadcast domains forward messages be-

tween rings and perform topology maintenance functions across the entire net-

work. Other than these functions, a gateway behaves exactly the same as a

processor. Each processor or gateway has stable storage, and communication

20 CHAPTER 3. THE MODEL AND SERVICES

is bi-directional. Messages are timestamped when they are �rst broadcast and

messages are ordered by timestamp to ensure consistent ordering across the en-

tire network. To ensure that timestamps on messages generated by a processor

after the processor failed are larger than the timestamp on any message previ-

ously generated by the processor, the current timestamp is stored periodically

in stable storage.

We use the term con�guration to de�ne a particular membership or network

topology view provided to the application. Themembership of a single-ring pro-

tocol con�guration is a set of processor identi�ers. In the single-ring protocol,

a minimum con�guration consists of the processor itself. A regular con�gu-

ration has the same membership and identi�er as its corresponding ring. The

transitional con�guration consists of processors that are transitioning from the

same old ring to the new ring. A transitional con�guration also has an identi�er

that consist of a \ring" sequence number and the identi�er of a representative.

The network topology of the multiple-ring protocol consists of a set of single-

ring con�guration identi�ers. The minimum con�guration in the multiple-ring

protocol consists of a single ring identi�er.

We distinguish between receipt and delivery of a message. A message is

received from the next lower layer in the protocol hierarchy and a message is

delivered to the next higher layer. Delivery may be delayed to achieve ordering

properties requested by a message. We use the term originate to refer to the

generation of a message by the application when it is broadcast the �rst time.

Two types of messages are delivered to the application. Regular mes-

sages are originated by the application for delivery to the application. A

configuration change message contains noti�cation of a membership change

reported by the single-ring membership algorithm or a topology change reported

by the multiple-ring membership algorithm. The con�guration change message

terminates one con�guration and initiates another.

We assume that the network, processors and gateways are asynchronous

and provide unreliable failure detectors using timeouts [16]. We implement
ow

control within the protocol so that messages are not dropped within a processor

or gateway.

3.2. FAULT MODEL 21

3.2 Fault Model

Processors can incur fail stop [52], timing, or omission faults [23]. A processor

that is excessively slow, or that fails to receive a message an excessive number

of times, can be regarded as having failed. A processor's identi�er does not

change when the processor fails and restarts. A repaired processor may have

retained all or part of its data in stable storage. There are no malicious faults.

The network may become partitioned so that processors in one component of

the partitioned network are unable to communicate with processors in another

component. Communication among separated components can subsequently be

reestablished. Messages can be dropped by the communication medium, and

corrupted messages are detected.

No distinction is made in the single-ring protocol between loss of all copies

of the token and processor failure or network partitioning because a failed or

disconnected processor cannot forward the token to the next processor on the

ring. Thus, the consequence of processor failure or network partitioning is loss of

all copies of the token. Loss of all copies of the token results in invocation of the

single-ring membership algorithm and formation of a new token-passing ring.

3.3 Consensus

We de�ne consensus with respect to a particular con�guration C as follows:

� If processor p reaches a decision value x in con�guration C, then every

processor in C reaches decision value x or fails.

� If processor p reaches a decision value x in con�guration C, then p does

not reach a di�erent decision value y.

� The decision value reached by p is not pre-determined.

The main di�erence between this de�nition of consensus and the traditional

de�nition is that traditional consensus is not tied to a particular con�guration

but instead applies across the entire system over all time [28].

22 CHAPTER 3. THE MODEL AND SERVICES

3.4 Membership Services

The following services are provided by the single-ring membership algorithm

and by the multiple-ring membership algorithm.

� Delivery of Con�guration Change Messages. Each con�guration

change is signalled by delivery of a Con�guration Change message by the

membership algorithm. The Con�guration Change message contains the

con�guration identi�er and the membership of the new con�guration.

� Uniqueness of Con�gurations. Each con�guration identi�er is unique;

moreover, at any time a processor is a member of at most one con�gura-

tion.

� Termination. If a con�guration ceases to exist for any reason, such

as processor failure or network partitioning, then every processor of that

con�guration either installs a new con�guration, or fails before doing so.

� Con�guration Change Consistency. Processors that are members

of the same con�guration C

1

deliver the same Initiate Con�guration C

1

message to begin the con�guration. Furthermore, if two processors install

a con�guration C

2

directly after C

1

, then the processors deliver the same

Con�guration Change message to terminate C

1

and initiate C

2

.

Within the multiple-ring membership algorithm a con�guration is a topol-

ogy and the Con�guration Change message is replaced by the Topology Change

message. The Initiate Con�guration C

2

message and the Terminate Con�gu-

ration C

1

message are replaced by the Initiate Topology C

2

message and the

Terminate Topology C

1

message, respectively.

3.5 Reliable Ordered Delivery Services

The service of reliable totally ordered message delivery is provided by both the

single-ring protocol for messages in the broadcast domain and the multiple-ring

protocol for messages network-wide.

3.5. RELIABLE ORDERED DELIVERY SERVICES 23

We de�ne a causal order that is similar to Lamport's de�nition [36], but

we de�ne the causal order in terms of messages rather than events and with

respect to a particular con�guration rather than across all con�gurations. This

allows rejoining of failed processors and remerging of partitioned networks with-

out requiring all messages from all components of a partition to be delivered.

For this de�nition, we split the Con�guration Change message into a Termi-

nate Con�guration C

1

message and an Initiate Con�guration C

2

message. The

Initiate Con�guration C

2

message that starts con�guration C

2

lists the mem-

bership of con�guration C

2

and is the same for every processor p in C

2

. A

processor that transitions directly from con�guration C

1

to con�guration C

2

delivers a Terminate Con�guration C

1

message and an Initiate Con�guration

C

2

message together as a Con�guration Change message. A processor always

delivers a Terminate Con�guration message and an Initiate Con�guration mes-

sage together; one is never delivered without the other. There is, however, no

implied causal relationship between the Initiate Con�guration message and the

Terminate Con�guration message for di�erent con�gurations.

Causal Order for a Con�guration

For a given con�guration C and for all processors p that are members of

C, the causal order for C is the re
exive transitive closure of the \precedes"

relation de�ned as follows:

� The Initiate Con�guration C message delivered by p precedes every mes-

sage originated by p in C.

� For each message m

1

delivered by p in C and each message m

2

originated

in C by p, if m

1

is delivered by p before message m

2

is originated, then

m

1

precedes m

2

.

� For each messagem

1

originated in C by p and each messagem

2

originated

in C by p, if m

1

is originated by p before m

2

, then m

1

precedes m

2

.

� Each message delivered in C by p precedes the Terminate Con�guration

message delivered by p to terminate C.

24 CHAPTER 3. THE MODEL AND SERVICES

This de�nition of causal order allows processors to deliver messages after the

network partitions by limiting the causal relationships to the con�guration in

which the message is originated. This allows processors in di�erent components

of the partitioned network to remerge and deliver messages without having

to deliver the messages delivered in the other component. Past systems have

de�ned the causal order to be across all messages and all con�gurations [13].

The processors in a con�guration do not necessarily deliver the same last

few messages in a con�guration. Partitioning of the network can result in dif-

ferent sets of messages being delivered in di�erent components of the network

and therefore in di�erent con�gurations. Each message is delivered according

to its timestamp so that the relative order of any two messages can be estab-

lished deterministically by processors that deliver both messages. We de�ne the

message delivery order within a con�guration and across the entire network in

the following manner:

Delivery Order for Con�guration C

The re
exive transitive closure of the \precedes" relation de�ned on the union

of the sets of regular messages delivered in C by all processors p in C, as follows:

� Message m

1

precedes message m

2

if processor p delivers m

1

in C before p

delivers m

2

in C.

We prove in Sections 4.5 and 5.5 that the Delivery Order for Con�guration C

is a total order. Note that some processors in con�guration C may not deliver

all messages of the Delivery Order for Con�guration C.

Global Delivery Order

The re
exive transitive closure of the union of the Delivery Orders for all Con-

�gurations and of the \precedes" relation de�ned on the set of Con�guration

Change messages and regular messages as follows:

� Message m

1

precedes message m

2

if a processor p delivers m

1

before p

delivers m

2

.

We prove in Sections 4.5 and 5.5 that the Global Delivery Order is a total

order. In the past, the protocol e�ciency decreased as the level of ordering

3.5. RELIABLE ORDERED DELIVERY SERVICES 25

increased. This was a result of the perceived need to construct the total order

from the causal order. The objective of the Totem protocol is to deliver to-

tally ordered messages e�ciently and with less overhead than can be achieved

by other protocols for partial ordering on a local-area network. The message

ordering services provided by the Totem single-ring and multiple-ring protocols,

de�ned below, are for all con�gurations C and all processors p 2 C.

� Reliable Delivery for Con�guration C

{ Each regular message m has a unique message identi�er.

{ If a processor p delivers message m, then p delivers m only once.

{ A processor p delivers its own messages unless it fails.

{ If processor p delivers two di�erent messages, then p does not deliver

them simultaneously.

{ A processor p delivers all of the messages originated in its current

con�guration C unless a con�guration change occurs.

{ If processors p and q are both members of consecutive con�gurations

C

1

and C

2

, then p and q deliver the same set of messages in C

1

before

delivering the Con�guration Change message that terminates C

1

and

initiates C

2

.

� Delivery in Causal Order for Con�guration C

{ Reliable delivery for Con�guration C.

{ If processor p delivers both messages m

1

and m

2

, and m

1

precedes

m

2

in the Lamport causal order, then p delivers m

1

before p delivers

m

2

.

� Delivery in Agreed Order for Con�guration C

{ Delivery in causal order for Con�guration C.

{ If processor p delivers message m

2

in con�guration C and m

1

is any

message that precedes m

2

in the Delivery Order for Con�guration C,

then p delivers m

1

in C before p delivers m

2

.

26 CHAPTER 3. THE MODEL AND SERVICES

� Delivery in Safe Order for Con�guration C

{ Delivery in agreed order for Con�guration C.

{ If processor p delivers message m in con�guration C and the origi-

nator of m requested safe delivery, then p has determined that each

processor in C has received m and will deliver m or will fail.

� Extended Virtual Synchrony

{ Delivery in agreed or safe order as requested by the originator of the

message.

{ If processor p delivers messages m

1

and m

2

, and m

1

precedes m

2

in

the Global Delivery Order, then p delivers m

1

before p delivers m

2

.

Reliable delivery de�nes which messages a processor must deliver and basic

consistency constraints on that delivery. Agreed order goes further by de�ning

delivery in total order. When a processor delivers a message in agreed order in

a con�guration, the processor has delivered all preceding messages in the total

order and the processors in the con�guration have reached consensus regarding

the delivery order of this message.

When a processor delivers a message in safe order in a con�guration, the

processors in the con�guration have reached consensus regarding the delivery

order of the message. Consensus is reached through acknowledgments from

the other processors in the con�guration that have received the message and

all preceding messages. The algorithm is designed to guarantee that once a

processor has acknowledged a message and its predecessors, the processor will

deliver the message unless the processor fails. There is no requirement de�ning

the con�guration in which the processor delivers the message.

Extended virtual synchrony ensures that messages are delivered in a con-

sistent order system-wide, even if processors fail and restart or the network

partitions and remerges. In contrast, virtual synchrony only constrains deliv-

ery of messages in a single component of the network, even if processors in

other components have received the messages. Protocols that use virtual syn-

chrony as their consistency constraint are forced to ensure that at most one

component continues to operate after partitioning occurs. Virtual synchrony

3.5. RELIABLE ORDERED DELIVERY SERVICES 27

allows the components that are halted to deliver messages inconsistently be-

fore halting. Extended virtual synchrony has been de�ned to provide consistent

message delivery despite partitioning and remerging. The Totem protocol uses

a Con�guration Change message or a Topology Change message to notify the

application of the membership of the con�guration or topology within which

delivery is guaranteed before delivering a message as safe.

Some distributed applications require that, if a partition occurs, at most

one of the resulting components is allowed to continue to deliver messages. The

component allowed to continue is referred to as the primary component. We

show in [44] that a primary partition system can be built on top of a protocol

that provides extended virtual synchrony.

28 CHAPTER 3. THE MODEL AND SERVICES

Chapter 4

The Single-Ring Protocol

The single-ring protocol provides membership and agreed and safe delivery of

messages within a broadcast domain. The membership algorithm gathers the

processors into a ring and begins circulation of the token. A processor must

be in possession of the token to broadcast a message. Each message header

contains a sequence number derived from a �eld in the token; there is a single

sequence of monotonically increasing sequence numbers for the ring. Delivery

in sequence number order is agreed delivery. Safe delivery uses an additional

�eld in the token to determine when all processors on the ring have received a

message.

4.1 The Total Ordering Algorithm

First we describe the algorithm with the assumptions that the token is never

lost, that processor failures do not occur, and that the ring does not become

partitioned; however, messages may be lost. In Section 4.2 we describe the

membership algorithm which handles token loss, processor failure and restart,

and partitioning and remerging of the ring.

The Data Structures

Regular Message

Each regular message contains the following �elds:

30 CHAPTER 4. THE SINGLE-RING PROTOCOL

� sender id: The identi�er of the processor originating the message.

� ring id: The identi�er of the ring on which the message was originated,

consisting of the representative's identi�er and a ring sequence number.

� seq: A message sequence number.

� conf id: 0.

� contents: The contents of the message.

The ring id, seq and conf id �elds constitute the identi�er of the message.

Regular Token

To broadcast a message on the ring, a processor must hold the token. The token

contains the following �elds:

� type: Regular.

� ring id: The identi�er of the ring on which the token is circulating, con-

sisting of the representative's identi�er and a ring sequence number.

� token seq: A sequence number which allows recognition of redundant

copies of the token.

� seq: The largest sequence number of any message that has been broadcast

on the ring, i.e. a high-water mark.

� aru: A sequence number (all-received-up-to) used to determine which mes-

sages processors on the ring have received, i.e. a low-water mark. The aru

controls the discarding of messages that have been received by all proces-

sors on the ring.

� aru id: The identi�er of the processor that set the aru to a value less than

the seq. The aru id is used to choose a processor to blame for failure to

receive.

� rtr: A retransmission request list, containing one or more retransmission

requests.

4.1. THE TOTAL ORDERING ALGORITHM 31

Local Variables

Each processor maintains the following local variables:

� my aru: The sequence number of a message such that the processor has

received all messages with sequence numbers less than or equal to this

sequence number.

� my token seq: The value of the token seq when the processor forwarded

the token last.

� my high delivered: The sequence number in the most recently delivered

message.

The my aru and my token seq are initialized to zero by the processor in the

membership algorithm during the formation of the ring. My aru is updated by

the processor as it receives messages. My token seq is updated by the processor

as it receives tokens. My high delivered is initialized to zero on installation of a

new token ring and is updated by the processor as it delivers messages.

The Algorithm

On reception of the token, a processor completes processing of all the messages

in its input bu�er, so that the processor has an empty input bu�er at the start

of the next token rotation. After emptying the messages from its input bu�er,

the processor broadcasts requested retransmissions and new messages, updates

the token, and transmits the token to the next processor on the ring. For each

new message that it broadcasts, a processor increments the seq �eld of the token

and sets the sequence number of the message to the value in the seq �eld.

Each time a processor receives the token, the processor compares the aru

�eld of the token with my aru and, if my aru is smaller, replaces aru with

my aru and sets aru id to its identi�er. If the processor receives the token and

the aru id �eld of the token equals its identi�er, it then sets aru to my aru. If

seq and aru are equal, it increments aru and my aru in step with seq and sets

the aru id �eld to negative one (an invalid processor identi�er).

32 CHAPTER 4. THE SINGLE-RING PROTOCOL

If the seq �eld of the token is higher than my aru, there are messages that

this processor has not received so the processor sets or augments the rtr �eld.

If the processor has received messages that appear in the rtr �eld then, for each

such message, it retransmits that message before broadcasting new messages.

When it retransmits a message, the processor removes the sequence number of

that message from the rtr �eld. The pseudocode executed by a processor on

receipt of a token is shown in Figure 4.1.

If a processor has received message m and has received and delivered every

message with sequence number less than that of m and if the originator of m

requested agreed delivery, then the processor delivers m in agreed order. If,

in addition, the processor has forwarded the token with an aru greater than

or equal to the sequence number of m on two successive rotations and if the

originator of m requested safe delivery, then m can be delivered by the processor

in safe order. When a message becomes safe, it no longer needs to be retained

for future retransmission. The pseudocode executed by a processor on receipt

of a regular message is given in Figure 4.2.

The total ordering algorithm is unable to continue when the token is lost;

token retransmission has been added to reduce the probability that the token is

lost. Each time a processor forwards the token, it sets a Token Retransmission

timeout. A processor cancels the Token Retransmission timeout if it receives

a regular message or the token. Receipt of a regular message indicates that

the token is not lost. On a Token Retransmission timeout, the processor re-

transmits the token to the next processor on the ring and then resets the Token

Retransmission timeout.

The token seq �eld provides recognition of redundant tokens. A processor

accepts the token only if the token seq �eld of the token is greater than or equal

to my token seq; otherwise, the token is discarded as redundant. If the token is

accepted, the processor increments token seq and sets my token seq to the new

value of token seq. Token retransmission increases the probability that the token

will be received at the next site and incurs minimal overhead. The membership

algorithm described in Section 4.2 handles the loss of all copies of the token.

4.1. THE TOTAL ORDERING ALGORITHM 33

Regular token received:

if token.ring id 6= my ring id or token.token seq < my token seq then

discard token

else

cancel Token Retransmission timeout

determine how many msgs I'm allowed to broadcast

by
ow control

update retransmission requests

broadcast requested retransmissions

subtract retransmissions from allowed to broadcast

for allowed to broadcast iterations do

get message from new message queue

increment token.seq

set message header �elds and broadcast message

endfor

update my aru

if my aru < token.aru or my id = token.aru id or

token.aru id = invalid then

token.aru := my aru

if token.aru = token.seq then

token.aru id = invalid

else token.aru id = my id

endif

endif

Determine failure to receive (detailed in Figure 4.4)

update token rtr and
ow control �elds

last aru seen := token.aru

increment token.token seq

my token seq := token.token seq

forward token

set Token Retransmission timeout

deliver messages that satisfy their delivery criteria

endif

Figure 4.1: Algorithm executed by a processor or a gateway on receipt

of a token.

34 CHAPTER 4. THE SINGLE-RING PROTOCOL

Regular message received:

add message to receive message queue

update retransmission request list

update my aru

deliver messages that satisfy their delivery criteria

Figure 4.2: Algorithm executed by a processor or a gateway on receipt

of a regular message.

4.2 The Membership Algorithm

The Totem single-ring ordering algorithm is optimized for high performance

under failure-free conditions, but depends on a membership algorithm to han-

dle token loss, processor failure, and network partitioning. The membership

algorithm detects these events and constructs a new ring on which the Totem

single-ring ordering algorithm can resume operation. The objective of the mem-

bership algorithm is to reach consensus on the membership of the new ring, to

generate a new token, and to recover messages that had not been delivered by

some of the processors when the failure occurred.

Termination of the membership algorithm is achieved by only allowing the

set of processors considered for membership and the set of processors regarded

as failed to increase monotonically, by bounding with timeouts the time that

a processor spends in each of the states, and by forcing an additional failure

rather than repeating a proposed membership.

The States of the Membership Algorithm

The membership algorithm is described by four states illustrated in Figure 4.3,

we list the states here before de�ning the algorithm below.

� Operational State. In the Operational state messages are broadcast

and delivered in agreed or safe order, as described in Section 4.1.

� Gather State. In the Gather state processors exchange Join messages

with one another to reach consensus on a ring membership. Each Join

message contains a set of processors being considered for membership in

4.2. THE MEMBERSHIP ALGORITHM 35

Operational

received

Extended virtual synchrony

received (1st round)

received

Join received with

Recover

and Representative

received

Join received with
Gather

Commit

Commit token

Commit token received

Commit token receivedRepresentative) or
Consensus and

(Join received and

Foreign message

Foreign message

Foreign message

sender not in my Join

sender not in my Join

Foreign or Join message
 received

Join received with larger seq than ring_seq

Join received with larger seq than ring_seq

seq <= ring_seq or

seq <= ring_seq or

(sender in my Join)

(sender in my Join)

Consensus, Token Loss,

Commit token received

Token Loss timeout Join received

and not
(Consensus and Representative)

or Join timeout

Token Loss timeout or

Token Loss timeout or

received Commit token (1st rotation)

(2nd rotation)

Figure 4.3: The �nite state machine for the membership algorithm.

the new ring by the processor broadcasting the Join message and also a

set of processors regarded as failed.

� Commit State. On reaching consensus, the representative constructs an

identi�er for the ring and launches a Commit token. Circulation of the

Commit token con�rms that all members of the ring agree on the mem-

bership, and collects information needed to determine correct handling of

the messages from the old ring that had not been delivered by some of the

processors when the membership algorithm started.

� Recover State. In the Recover state processors use the new ring to

retransmit messages from their old rings.

The Events of the Membership Algorithm

There are seven membership events, namely:

� Receiving a foreignmessage broadcast by a processor that is not a member

of the ring. A foreign message activates the membership algorithm in the

processor that receives it.

36 CHAPTER 4. THE SINGLE-RING PROTOCOL

� Receiving a Join message, which informs the receiver of the sender's pro-

posed membership and may cause the receiver to enlarge its my proc set

or my fail set.

� Receiving a Commit token. On the �rst reception of the Commit token a

member of the proposed new ring updates the Commit token. On the sec-

ond reception it obtains the updated information that the other members

have supplied.

� Token Loss timeout. This timeout indicates that a processor did not

receive the token or regular messages from other processors on the ring in

the required amount of time and activates the membership algorithm.

� Join timeout. This timeout is used to determine the interval after which

a Join message is rebroadcast in the Gather or Commit states.

� Consensus timeout. This timeout indicates that a processor participating

in the formation of a new ring failed to reach consensus in the required

amount of time.

� Recognizing failure to receive. If the aru has not advanced in several

rotations of the token, a processor determines that the processor that set

this aru has repeatedly failed to receive a message.

The Data Structures

Local Variables

Each processor maintains the following local variables:

� my ring id: The ring identi�er in the most recent Commit token that the

processor has accepted.

� my old ring id: The ring identi�er of the last ring this processor installed.

� my rotation count: The number of times that the processor has forwarded

the token.

4.2. THE MEMBERSHIP ALGORITHM 37

� my last aru: The value of the aru when the processor last forwarded the

token.

� my aru count: The number of times that the processor has received the

token with an unchanged aru where the aru is not equal to seq.

� my memb: The set of identi�ers of processors on the current ring.

� my trans memb: The set of identi�ers of processors that are transitioning

from the processor's old ring to its new ring.

� my new memb: The set of identi�ers of processors on the new ring.

� my proc set: The set of identi�ers of processors that are under considera-

tion for the membership of a new ring.

� my fail set: The set of identi�ers of processors that the processor has

determined to have failed during execution of the membership algorithm

(a subset of my proc set).

� consensus: A boolean array indexed by processors and indicating whether

each processor is committed to the processor's my proc set andmy fail set.

� my deliver memb: The set of identi�ers of processors whose messages the

processor must deliver in the transitional con�guration.

� my received
g: A
ag that indicates whether the processor has received

all messages from processors in my deliver memb.

� my last: A list of Join messages that have been received from other pro-

cessors.

� discard regular token: A boolean to decide whether the regular token

should be discarded.

� high ring delivered: The largest old ring sequence number of any message

delivered on the old ring by the processors in my deliver memb.

38 CHAPTER 4. THE SINGLE-RING PROTOCOL

� low ring aru: The lowest aru value of any of the processors in

my deliver memb.

When a processor �rst comes up, it initializes the representative identi�er in

my ring id to its processor identi�er and the sequence number to the value

contained in stable storage. When a processor installs a new ring, it initializes

my memb and my proc set to the set of identi�ers of processors on the new

ring, my fail set and my last to the empty set, my old ring id to my ring id,

and my received
g and discard regular token to false. A processor initializes

my last aru, my aru count, and my rotation count to zero in the membership

algorithm during the formation of the ring, and updates these variables each

time it forwards the token.

The Join Message

Each time a processor in the Gather state modi�es my proc set or my fail set

it broadcasts a special type of message, the Join message. Join messages di�er

from regular messages in that a processor may broadcast a Join message without

holding the token; moreover, Join messages are not retransmitted or delivered

to the next higher layer. A Join message contains the following �elds:

� type: Join.

� sender id: The processor identi�er of the sender.

� ring seq: The largest sequence number of a ring id known to the sender.

� proc set: The set of identi�ers of processors that are under consideration

for membership in a new ring.

� fail set: The set of identi�ers of processors that the sender has determined

to have failed during execution of the membership algorithm (a subset of

proc set).

� rotation count: The number of times the sender has forwarded the token

since reaching consensus.

4.2. THE MEMBERSHIP ALGORITHM 39

The processor broadcasting the Join message sets the proc set, fail set, and

rotation count �elds of the Join message to the values of its local variables

my proc set, my fail set, and my rotation count, respectively. It also sets the

ring seq �eld of the Join message to the ring sequence number in my ring id.

Each time a processor broadcasts a Join message, it is trying to achieve

consensus on the proc set and fail set in the Join message. The ring seq �eld

allows the receiver of a Join message to determine if the sender has abandoned

a past round of consensus and is now attempting to form a new membership.

It is also used to create unique transitional ring identi�ers.

The Con�guration Change Message

The membership algorithm uses another special type of message, the Con�gu-

ration Change message, which contains the following �elds:

� ring id: The identi�er of the regular con�guration that this message ini-

tiates if the message initiates a regular con�guration or the identi�er of

the preceding regular con�guration if this message initiates a transitional

con�guration.

� seq: 0 if this message initiates a regular con�guration or the largest se-

quence number of a message delivered in the preceding regular con�gura-

tion if this message initiates a transitional con�guration.

� conf id: The identi�er of the old transitional con�guration from which the

processor is transitioning if this message initiates a regular con�guration

or the identi�er of the transitional con�guration to which the processor is

transitioning if this message initiates a transitional con�guration.

� memb: The membership of the con�guration that this message initiates.

The ring id, seq and conf id �elds comprise the identi�er of the message. A

Con�guration Change message may describe a change from an old con�guration

to a transitional con�guration or from a transitional con�guration to a new

con�guration. Con�guration Change messages di�er from regular messages in

that they are generated locally at each processor and are delivered directly to

the application without being broadcast. They are used to inform the next

higher layer when membership changes occur.

40 CHAPTER 4. THE SINGLE-RING PROTOCOL

The Commit Token

Each new ring is initiated by one of its members, the representative, a processor

chosen deterministically from the members of the ring. The representative gen-

erates a Commit token that di�ers from the regular token in that its type �eld

is set to Commit and it contains the following �elds in place of the rtr �eld:

� memb list: A list containing a processor identi�er, my old ring id,

old ring my aru, my received
g, and my high delivered �elds for each

member of the new ring. The my received
g �eld indicates whether

the member has received all messages from the processors in its

my deliver memb in a previous failed pass through the Recover state in

which the new ring was not installed. The my high delivered �eld is the

largest sequence number of a message that the processor has delivered on

the old ring. This list is ordered according to the positions of the members

on the new ring.

� memb index: The index of the processor in the memb list that last for-

warded the Commit token.

On the �rst rotation of the Commit token around the new ring,

each processor sets its my old ring id, old ring my aru, my received
g, and

my high delivered �elds in the token. It also updates memb index. The re-

maining �elds are set by the representative when it creates the Commit token.

The Algorithm

A processor that starts or restarts �rst forms and installs a singleton ring con-

taining only itself; it then broadcasts a Join message containing the value of

my ring id.seq from its stable storage and proceeds to the Gather state.

The Operational State

The total ordering algorithm described in Section 4.1 is executed by a processor

while in the Operational state. When the Token Loss timeout expires or when

a Join or foreign message is received by a processor on the ring, the algorithm

for the formation of a new ring is invoked in the Operational state. Join and

4.2. THE MEMBERSHIP ALGORITHM 41

Regular token received

in addition to the actions listed in Figure 4.1

increment my rotation count and

Determine failure to receive (described below)

if token.aru = last aru seen and token.aru id 6= invalid then

increment my aru count

else

my aru count := 0

endif

if my aru count > fail rcv const and token.aru id 6= my id then

add token.aru id to my fail set

Call Shift to Gather

endif

Token Loss timeout expired

discard regular token := true

call Shift to Gather

Foreign message from processor q received:

add message.sender id to my proc set

call Shift to Gather

Join message from processor q received:

same as in Gather state (Figure 4.6) except always call Shift to Gather

before returning regardless of content of Join message

Commit token received:

discard the Commit token

Figure 4.4: Algorithmexecuted by a processor or a gateway on occurrence

of a membership event in the Operational state.

Consensus timeouts cannot occur in the Operational state. If a processor re-

ceives a Commit token, it discards that token. A description of the actions

taken by a processor in the Operational state when a membership change event

occurs is given below. The pseudocode executed by a processor or gateway in

the Operational state is shown in Figure 4.4.

Token Loss Timeout

On expiration of the Token Loss timeout in the Operational state, a processor

broadcasts a Join message, sets the Join and Consensus timeouts, and shifts to

42 CHAPTER 4. THE SINGLE-RING PROTOCOL

the Gather state. The pseudocode executed by a processor when it shifts to the

Gather state is given in Figure 4.5.

Receiving a Foreign Message

If a processor receives a foreign message in the Operational state that is not

a message retransmitted in the Recover state, it sets my proc set to the union

of its current my proc set and the singleton set containing the identi�er of the

sender of the foreign message. It then shifts to the Gather state (Figure 4.5).

Receiving a Join Message

If a processor receives a Join message in the Operational state and if the re-

ceiver's identi�er is in the Join message's fail set or if the sender's identi�er is

in the receiver's my proc set and the Join message's ring seq is less than the

receiver's ring sequence number, then it ignores the Join message. Otherwise,

the processor updates its my proc set and my fail set as in the Gather state

described below and shifts to the Gather state (Figure 4.5).

Recognizing Failure to Receive

A processor bu�ers a message for retransmission until receipt of the message

has been acknowledged by the other processors on the ring. If a processor

repeatedly fails to receive a particular message, then the other processors will

bu�er that message and all subsequent messages until that message is received.

A processor cannot be allowed to fail to receive messages inde�nitely because

that failure might impose excessive bu�ering requirements, and prevent other

processors from delivering messages in safe order.

When its local variable my aru count reaches a predetermined constant, a

processor determines that some other processor has failed, namely the processor

whose identi�er is in the aru id �eld of the token. The processor then discards

the token, updates my fail set to include the processor identi�er in aru id and

shifts to the Gather state (Figure 4.5).

4.2. THE MEMBERSHIP ALGORITHM 43

Shift to Gather

broadcast Join message containing my proc set, my fail set,

my rotation count, and seq := my ring id.seq

cancel Token Loss timeout and Token Retransmission timeout

reset Join and Consensus timeouts

discard regular token := true

for all q in my proc set do consensus[q] := false endfor

consensus[my id] := true

for all messages in my last do

if message.proc set = my proc set and

message.fail set = my fail set then

consensus[q] := true

endif

endfor

state := Gather

call Try to Form

Figure 4.5: Algorithm executed by a processor or a gateway to shift to

the Gather state.

The Gather State

The objective of the Gather state is to achieve a membership that is as large

as possible, while ensuring that the membership algorithm terminates. A mem-

bership is a set of processor identi�ers on which the processors agree and in

which every processor can communicate with every other processor. The ac-

tions on receiving a regular token or a foreign message in the Gather state and

on detecting failure to receive in the Gather state are similar to the actions

in the Operational state. In the Gather state a processor collects information

about operational processors and failed processors. This information is broad-

cast in Join messages. The pseudocode executed by a processor or gateway in

the Gather state is shown in Figures 4.6 and 4.7.

Receiving a Join Message

When a processor receives a Join message in the Gather state, it updates its

my proc set andmy fail set as described below. If itsmy proc set andmy fail set

have changed, it abandons its previous consensus, broadcasts a new Join mes-

sage containing the updated sets, and resets the Join and Consensus timeouts.

The processor remains in the Gather state.

44 CHAPTER 4. THE SINGLE-RING PROTOCOL

Regular token or regular message received:

same as in Operational state

Foreign message from processor q received:

if q not in my proc set then

add message.sender id to my proc set

call Shift to Gather

endif

Join message from processor q received:

if my proc set = message.proc set and

my fail set = message.fail set then

consensus[q] := true

call Try to Form

return

else if message.proc set is a subset of my proc set and

message.fail set is a subset of my fail set then

return

else if q in my fail set then return

else/* there is something in this Join message not in mine */

add message.proc set to my proc set

if my id in message.fail set then

add message.sender id to my fail set

else

if q in my memb then

if q not in my fail set then add message.fail set to my fail set

else

add message.fail set � my memb to my fail set

endif

endif

add message to my last

call Shift to Gather

endif

Figure 4.6: Algorithmexecuted by a processor or a gateway in the Gather

state on receipt of a regular message, regular token or Join message.

4.2. THE MEMBERSHIP ALGORITHM 45

Commit token received:

if my proc set � my fail set = token.memb and

token.seq > my ring id.seq then

call Shift to Commit

endif

Join timeout expired:

broadcast Join message with my proc set, my fail set,

my rotation count and seq = my ring id.seq

set Join timeout

Consensus timeout expired:

empty my last

if consensus not reached then

for each processor q where consensus[q] 6= true do

add q to my fail set

endfor

call Shift to Gather

else

for all q do consensus[q] := false

consensus[my id] := true

set Token Loss timeout

endif

Token Loss timeout expired:

if reached consensus on same membership second time then

add processor with lowest my rotation count to my fail set

else

execute code for Consensus timeout expired in Gather state

endif

call Shift to Gather

Figure 4.7: Algorithmexecuted by a processor or a gateway in the Gather

state on receipt of a Commit token, Join timeout, Consensus timeout or

Token Loss timeout.

46 CHAPTER 4. THE SINGLE-RING PROTOCOL

Updating the Membership on Reception of a Join Message

If a processor receives a Join message with a proc set and fail set identical to

its my proc set and my fail set, respectively, the processor records the sender of

the Join message as participating in the consensus on those sets.

If a processor receives a Join message such that the sender's identi�er is

in the receiver's my fail set, it ignores that Join message. This is appropriate

because a processor never declares itself failed. If a processor receives a Join

message such that the receiver's identi�er is in the Join message's fail set, the

receiver updates both my proc set and my fail set to include the identi�er of the

sender of the Join message. This is appropriate because those two processors

will not be able to reach consensus on a membership that excludes one of them.

If a processor receives a Join message such that (1) the receiver's identi�er is

not in the Join message's fail set, (2) the sender's identi�er is not in the receiver's

my fail set, and (3) the Join message's proc set or fail set contains at least one

identi�er that is not in the receiver's my proc set or my fail set, respectively,

then the receiver adds to its my proc set and my fail set the identi�ers in the

Join message's proc set and fail set, respectively, with the following exception.

If the sender is not a member of the receiver's old ring, then the receiver does

not add an identi�er of a member of its own old ring to its my fail set. This

exception is intended to bias the membership algorithm towards preserving

existing rings by preventing an outsider from breaking up an existing ring.

The Join Timeout and Rebroadcasting Join Messages

Each time a processor broadcasts a Join message, it sets or resets the Join

timeout. When the Join timeout expires, the processor rebroadcasts the Join

message. The Join timeout is shorter than the Consensus timeout and is used to

increase the probability that Join messages from all currently working processors

are received during a single round of consensus.

4.2. THE MEMBERSHIP ALGORITHM 47

Reaching Consensus

A processor has reached consensus when it has received Join messages with

proc set and fail set equal to its my proc set and my fail set, respectively, from

every processor in the di�erence of those sets, i.e. my proc set � my fail set. A

processor is also considered to have reached consensus when it has received a

Commit token with the same membership as my proc set � my fail set. The

processors in that di�erence constitute the membership of the proposed new

ring.

When a processor has reached consensus, it determines whether it is the

representative of the proposed new ring. If it is not the representative and

has not received the Commit token, the processor sets the Token Loss timeout,

cancels the Consensus timeout and continues in the Gather state, waiting for

the Commit token.

If it is the representative, the processor generates a Commit token. It de-

termines the ring id of the new ring, which is composed of the representative's

identi�er and a ring sequence number equal to four plus the largest ring sequence

number in any of the Join messages used to reach consensus (the sequence num-

ber two less than that of the new ring is used to create a unique transitional

ring identi�er). It also determines the memb list of the Commit token, which

speci�es the membership of the new ring and the order in which the token will

circulate, with the representative placed �rst. In addition, the representative

sets the type �eld of the Commit token to Commit, the token seq �eld to 0, the

seq �eld to 0, the aru �eld to 0, the fcc �eld to 0 and the retrans
g �eld to

false. It also sets the my old ring id, old ring my aru, my received flg and

my high delivered �elds in its entry of the memb list �eld of the token and

sets the memb index �eld to 1. The representative cancels the Consensus time-

out, sets the Token Loss timeout, transmits the Commit token, and shifts to

the Commit state. The pseudocode executed by the representative on reaching

consensus is given in Figure 4.8.

48 CHAPTER 4. THE SINGLE-RING PROTOCOL

Try to Form

if for all q in my proc set � my fail set, consensus[q] = true and

my id = smallest id of my proc set � my fail set then

token.ring id.seq := maximum of my ring id.seq and Join ring seqs + 4

token memb := my proc set � my fail set

call Shift to Commit

endif

Figure 4.8: Algorithm executed by a processor or a gateway on reaching

consensus.

Receiving a Commit Token

On receiving a Commit token, there are several acceptance tests performed by

a processor. The processor �rst ensures that the ring sequence number in the

ring id �eld is greater than the ring sequence number in my ring id and that

the token seq �eld is less than the cardinality of my proc set - my fail set. The

processor next compares the proposed membership, given by the memb list in

the Commit token, with the di�erence of its my proc set and my fail set. If

they di�er, the processor discards the Commit token. If they agree, it ex-

tracts the ring id for the new ring, sets the my old ring id, old ring my aru,

my received
g, and my high delivered �elds in its entry of the memb list �eld of

the token, and increments the memb index �eld of the token. It also initializes

its my rotation count to 1 and increments the token seq �eld of the token and

sets my token seq equal to token seq. The processor then cancels the Consensus

timeout, resets the Token Loss timeout, forwards the Commit token, and shifts

to the Commit state. The pseudocode executed by a processor when it shifts

to the Commit state is given in Figure 4.9.

The Consensus Timeout

If the Consensus timeout expires before a processor has reached consensus, it

adds to my fail set all of the processors in my proc set from which it has not

received a Join message with proc set and fail set equal to its own sets. It then

shifts to the Gather state (Figure 4.5).

4.2. THE MEMBERSHIP ALGORITHM 49

Shift to Commit

update memb list in Commit token with my old ring id, my aru,

my received
g, and my high delivered

my ring id := Commit token ring id

my rotation count := 1

forward Commit token

empty my last

cancel Join and Consensus timeouts

reset Token Loss timeout and Token Retransmission timeout

state := Commit

Figure 4.9: Algorithm executed by a processor or a gateway to shift to

the Commit state.

The Token Loss Timeout

When a processor enters the Gather state, it cancels the Token Loss timeout.

On reaching consensus the processor sets the Token Loss timeout and awaits

the Commit token. If the Token Loss timeout expires, it remains in the Gather

state and tries to reach consensus again. If it then reaches consensus on the

same my proc set and my fail set as it had previously, it adds one processor to

its my fail set and broadcasts another Join message. The processor added to

my fail set is the �rst processor on the token rotation path that forwarded the

token the fewest times, as determined by the my rotation count �elds of the

Join messages. If this is the processor itself, it forms a singleton ring. The same

mechanism applies if the processor returns to the Gather state on a Token Loss

timeout from the Commit or Recover state and reaches consensus on the same

my proc set and my fail set as it had previously.

If the Commit token subsequently reaches a processor that has already de-

termined that the token is lost because its Token Loss timeout expired, the

processor discards the token.

The Commit State

The objective of the Commit state is to establish that all members of the pro-

posed new ring agree on the membership and to collect information needed for

the recovery algorithm. In the Commit state regular tokens are discarded, for-

50 CHAPTER 4. THE SINGLE-RING PROTOCOL

Regular token received:

discard token

Regular message received:

same as in Operational state

Foreign message received:

discard message

Join message from processor q received:

if q in my new memb and message.ring seq � my ring id.seq then

execute code for receipt of Join message in Gather state

call Shift to Gather

endif

Commit token received:

if token.seq = my ring id.seq then call Shift to Recover

Join timeout expired:

same as in Gather state

Token Loss timeout expired:

call Shift to Gather

Figure 4.10: Algorithm executed by a processor or a gateway in the

Commit state.

eign messages are ignored, Token Loss and Join timeouts are handled as in the

Gather state, and Consensus timeout and recognition of failure to receive do not

occur. The pseudocode executed by a processor or gateway when it shifts to the

Commit state is given in Figure 4.9. The pseudocode executed by a processor

or gateway in the Commit state is shown in Figure 4.10.

Receiving a Commit Token

On receiving a Commit token during its second rotation on the proposed new

ring, a processor obtains, for each processor on that ring, the my old ring id

and old ring my aru of that processor's old ring. From this information the

processor calculates my trans memb, consisting of the processors transition-

ing from its same old ring. The processor then writes my ring id.seq to sta-

ble storage and forwards the token. If some processor in my trans memb has

its my received
g set to false, the processor shifts to the Recover state (Fig-

ure 4.11), sets my deliver memb, low ring aru, my received
g (to false), and

high ring delivered �elds, and then executes the recovery algorithm. If each of

4.2. THE MEMBERSHIP ALGORITHM 51

Shift to Recover

forward Commit token /* second time */

write my ring id.seq to stable storage

my aru count := 0

increment my rotation count

discard regular token := false

my new memb := membership in Commit token

my trans memb := members on old ring transitioning to new ring

if for some processor in my trans memb my received
g = false then

my deliver memb := my trans memb

my received
g := false

low ring aru := lowest aru for old ring for processors in my deliver memb

high ring delivered := highest sequence number of message delivered

for old ring by a processor in my deliver memb

copy all messages from old ring with sequence number >

low ring aru into retrans message queue

endif

my aru := 0

last aru seen := 0

my retrans
g count := 0

reset Token Loss timeout and Token Retransmission timeout

state := Recover

Figure 4.11: Algorithm executed by a processor or a gateway to shift to

the Recover state.

the processors in my trans memb has its my received
g set to true, the proces-

sor likewise shifts to the Recover state, and executes the recovery algorithm,

but in this case no messages for the old ring need to be retransmitted.

Receiving a Join Message

If a processor receives a Join message in the Commit state from a member of

the proposed new ring and that Join message contains a ring seq greater than

the ring sequence number of the proposed new ring, the processor abandons its

current consensus, updates my proc set and my fail set as in the Gather state

described above and shifts to the Gather state (Figure 4.5).

This is necessary because some processor has determined that either the

Commit token or the regular token for the new ring has been lost.

52 CHAPTER 4. THE SINGLE-RING PROTOCOL

A processor discards a token with a ring sequence number less than or equal

to its own ring sequence number. Such a token must be the token of an old or

abandoned ring.

The Recover State

On receiving the Commit token after its second rotation, the representative of

the new ring converts the Commit token into the regular token for the new ring,

replacing the memb list and memb index �elds by the rtr �eld. At this point

the new ring is formed but not yet installed, and the recovery operation begins.

The recovery algorithm is described in Section 4.3.

In the Recover state failure to receive is handled exactly as in the Oper-

ational state, and Join messages are handled exactly as in the Commit state.

Foreign messages are ignored, and Join and Consensus timeouts do not occur.

Expiration of the Token Loss timeout in the Recover state results in a proces-

sor's returning to the Gather state, where token loss is handled as though the

processor were a member of the old ring in the Gather state.

4.3 The Recovery Algorithm

The objective of the recovery algorithm is to recover the messages that had not

been delivered by some of the processors when the membership algorithm was

invoked, and to enable the processors transitioning from the same old con�gu-

ration to the same new con�guration to deliver the same set of messages from

the old con�guration. The recovery algorithm also maintains message delivery

guarantees to the application during recovery from failures. Maintenance of

these guarantees is essential to applications such as fault-tolerant distributed

databases. The pseudocode executed by a processor in the Recover state is

given in Figures 4.12 and 4.13.

4.3. THE RECOVERY ALGORITHM 53

Regular token received:

same as in Operational state (Figures 4.1 and 4.4) except get messages from

retrans message queue instead of new message queue

and before forwarding the token execute:

if retrans message queue is not empty then

if token.retrans
g = false then token.retrans
g := true

else

if token.retrans
g = true and I set it then token.retrans
g := false

endif

if token.retrans
g = false then increment my retrans
g count

else my retrans
g count := 0

endif

if my retrans
g count = 2 then my install seq := token.seq

if my retrans
g count � 2 and my aru � my install seq

and my received
g = false then

my received
g := true

my deliver memb := my trans memb

endif

if my retrans
g count � 3 and token.aru � my install seq

on last two rotations then

call Install Ring

endif

Regular message received:

reset Token Loss timeout

add message to receive message queue

update my aru

if retransmitted message from my old ring id then

add to receive message queue for old ring

remove message from retrans message queue for old ring

endif

Foreign message from processor q received: discard message

Join message from processor q received:

if q in my new memb

and message.ring seq � my ring id.seq then

execute code for receipt of Join message in Commit state

execute code for Token Loss in Recover state

endif

Figure 4.12: Algorithm executed by a processor or a gateway in the

Recover state on receipt of a regular message, regular token, foreign

message or Join message.

54 CHAPTER 4. THE SINGLE-RING PROTOCOL

Commit token received:

/* new representative, i.e. smallest processor id */

convert Commit token to regular token

if retrans message queue is not empty then

token.retrans
g := true

else

token.retrans
g := false

endif

forward regular token

reset Token Loss timeout

increment my rotation count

Token Loss timeout expired:

discard regular token := true

discard all new messages received on the new ring

empty retrans message queue

determine current old ring aru (it may have increased)

call Shift to Gather

Figure 4.13: Algorithm executed by a processor or a gateway in the

Recover state on receipt of a Commit token or on a Token Loss timeout.

The Data Structures

The recovery algorithm uses the following data structures in addition to those

already introduced.

Token Field

The recovery algorithm depends on the following �eld of the token:

� retrans
g: A
ag that is used to determine whether there are any addi-

tional old ring messages that must be rebroadcast on the new ring.

The retrans
g �eld of the token is initialized to false by the representative of

the new ring when it generates the Commit token.

Local Variables

The recovery algorithm also depends on the following local variables:

� my install seq: The largest new ring sequence number of any old ring mes-

sage transmitted on the new ring. The value of this variable is determined

locally, but has the same value for all processors that install the new ring.

4.3. THE RECOVERY ALGORITHM 55

� my retrans count: The number of successive token rotations on which the

processor has received the token with retrans
g false.

The Algorithm

A processor executing the recovery algorithm takes the following steps:

1. Exchange messages with the other processors that were members of the

same old ring to ensure that they have the same set of messages broadcast

on the old ring but not yet delivered.

2. Deliver to the application those messages that can be delivered on the

old ring according to the requirements for agreed or safe ordering, includ-

ing all messages with old ring sequence numbers less than or equal to

high ring delivered.

3. Deliver the �rst Con�guration Change message changing to the transi-

tional con�guration.

4. Deliver messages that could not be delivered in agreed or safe order on

the old ring because delivery might violate the requirements for agreed

or safe delivery, but that can be delivered in agreed or safe order in the

smaller transitional con�guration.

5. Deliver a second Con�guration Change message, changing to the new

con�guration.

6. Shift to the Operational state.

Steps 2 through 6 involve no communication with other processors and are

performed as one atomic action. The pseudocode executed by a processor to

complete these steps is given in Figure 4.14. In the Operational state the pro-

cessor broadcasts and delivers messages for the new ring.

Exchange of Messages from the Old Ring (Step 1)

To implement the �rst step of the recovery algorithm, each processor that is a

member of the new ring determines the lowest my aru of any processor from its

56 CHAPTER 4. THE SINGLE-RING PROTOCOL

Install Ring

deliver messages deliverable on old ring

(at least up through high ring delivered)

deliver membership change for transitional con�guration

deliver remaining messages from processors in my deliver memb

in transitional con�guration

deliver membership change for new ring

my memb := my new memb

my proc set := my memb

my old ring id := my ring id

my fail set := empty set

my received
g := false

state := Operational

Figure 4.14: Algorithm executed by a processor or a gateway to install a

new ring.

old ring that is also a member of the new ring. The processor then broadcasts

on the new ring every message for the old ring that it has received and that

has a sequence number greater than the lowest my aru. This ensures that each

processor receives as many messages as possible from the old ring.

Each message is broadcast with a new ring identi�er and a new ring sequence

number, and encapsulates the old ring message with its old ring identi�er and

old ring sequence number. The new ring sequence numbers are used to ensure

that messages are received; the old ring sequence numbers are used to order

messages as messages of the old ring. Messages from an old ring retransmitted

on the new ring are not delivered to the application by any processor that was

not a member of that old ring. No new messages are broadcast by a processor

in the Recover state.

Completion of the message exchange is determined by the retrans
g �eld in

the token and by the local variable my install seq. The retrans
g is initially set

to false, and a processor changes retrans
g from false to true if it has more old

ring messages to retransmit when it forwards the token. A processor changes

retrans
g from true to false if it set retrans
g to true and now has no further

old ring messages to retransmit.

4.3. THE RECOVERY ALGORITHM 57

When a processor has received the token on two successive rotations with

retrans
g set to false, it knows that all of the old ring messages have been

retransmitted on the new ring. The processor then sets my install seq to the

value of the seq �eld in the token; thus, my install seq is the largest new ring

sequence number of any old ring message transmitted on the new ring. When

my aru is at least equal to my install seq, the processor has received all of

the messages of the old ring that have been broadcast on the new ring. If

my received
g equals false, the processor then sets my received
g to true and

my deliver memb to my trans memb. The processor now has the complete set

of messages rebroadcast for the old ring by the processors in my trans memb.

If a processor has forwarded the token with retrans
g set to false on two

successive token rotations and with the aru at least equal to my install seq on

the last of those rotations, the processor provides a guarantee to deliver messages

with sequence numbers at most equal to my install seq that were originated by

processors in my deliver memb unless it fails, by setting its my received
g to

true.

When a processor has received the token with retrans
g set to false on three

successive token rotations and with the aru at least equal to my install seq on

the last two of those rotations, it determines that all processors on the ring

have the value for my install seq and have received all messages with sequence

numbers up to and including my install seq. The processor then proceeds to

the delivery of messages on the old ring without further message exchange.

Delivery of Messages on the Old Ring (Steps 2-3)

For each message, the processor must determine the appropriate membership

in which to deliver the message. A processor can deliver a message in agreed

order for the old ring if it is in sequence number order and all the messages with

lower sequence numbers have been delivered. A processor can deliver a message

in safe order for the old ring if it received the old ring token with the aru �eld

at least equal to the sequence number in the message twice in succession or if

some other processor already delivered the message on the old ring as indicated

by high ring delivered.

The processor sorts the messages for the old ring that were broadcast on

the new ring into the order of their sequence numbers on the old ring, and

58 CHAPTER 4. THE SINGLE-RING PROTOCOL

delivers messages in order until it encounters a gap in the message sequence

numbers or a message requiring safe delivery with a sequence number greater

than high ring delivered. The variable high ring delivered provides the informa-

tion that some processor delivered that message as safe on the old ring and

therefore that the message is deliverable on the old ring.

The processor then delivers the �rst Con�guration Change message, which

contains the identi�er of the old con�guration, the identi�er of the transitional

con�guration, and the membership of the transitional con�guration. The mem-

bership of the transitional con�guration is my trans memb. The identi�er of the

transitional con�guration has sequence number two less than the sequence num-

ber of my ring id, and the representative's identi�er is chosen deterministically

from my trans memb.

Delivery of Messages in the Transitional Con�guration (Steps 4-6)

Following the �rst Con�guration Change message, the processor delivers in or-

der all remaining messages that were originated on the old ring by processors in

my deliver memb. The processor then delivers a second Con�guration Change

message, which contains the identi�er of the transitional con�guration, the iden-

ti�er of the new con�guration (my ring id), and the membership of the new

con�guration (my new memb). The processor then shifts to the Operational

state (Figure 4.14).

Note that some messages cannot be delivered on the old ring or even in

the transitional con�guration because delivery of those messages might violate

agreed or safe order. Such messages follow a gap in the message sequence. For

example, if processor p originates or delivers message m

1

before it originates m

2

and processor q received m

2

but did not receive m

1

in the message exchange,

then processor q cannot deliver m

2

because causality would be violated. Here p

is not in the same transitional con�guration as q because, if p had been in the

same transitional con�guration, then q would have received all of the messages

originated by p before or during the message exchange.

Note also that a processor delivers messages for the old ring before it broad-

casts or delivers any new message for the new ring. The decision to shift to

the Operational state and the set of old ring messages to be delivered is a local

4.3. THE RECOVERY ALGORITHM 59

decision. Some processors may be in the Operational state broadcasting mes-

sages for the new ring, while others are still in the Recover state and will install

the new ring if the token completes its next rotation. Note, however, that no

safe message is delivered on the new ring before all processors on the new ring

install that ring.

Failure of Recovery

If the recovery fails while the recovery algorithm is being executed (for example,

because the token is lost), some processors may have installed the new ring while

others have not. Prior to installation, a processor's old ring is the ring of which

it was a member when it was last in the Operational state. Each processor must

preserve its old ring identi�er until it installs a new ring.

When a processor delivers a message in safe order in a transitional con�gu-

ration, it must have received a guarantee from all of the other members of the

con�guration that they will deliver the message unless they fail. If the token is

lost in the Recover state, some processors may not install the new ring. Each

such processor will proceed in due course to install a di�erent new ring with a

corresponding transitional con�guration. It must deliver the message in that

transitional con�guration in order to honor the guarantee.

Thus, if a processor has set its my received
g in the Commit token to true,

but the token is lost before this processor delivers those messages and installs

the new ring, then another processor in the transitional con�guration, relying

on the guarantee, may have delivered messages from the old ring in safe order

and installed the new ring. Consequently, if a processor �nds themy received
g

in the Commit token set to true for every processor in my trans memb, it must

retain the old ring messages originated by members of my deliver memb and

deliver them in the transitional con�guration for the new ring that it actu-

ally installs. Note that my trans memb can only decrease on successive passes

through the Recover state before a new ring is installed.

Examples

Consider the simple example shown in Figure 4.15. Here a ring containing

processors p, q, r, s and t undergoes a partition in which p becomes isolated

60 CHAPTER 4. THE SINGLE-RING PROTOCOL

uv
p

p
qrst

pqrst uv

qrstuv

configuration
transitional

regular
configuration

Figure 4.15: Regular and transitional con�gurations. The vertical lines

represent the total orders of messages that have been delivered in the

indicated con�guration, and the dashed horizontal lines represent Con-

�guration Change messages.

while q, r, s and t merge into a new ring with u and v. Processors q, r, s and

t deliver two Con�guration Change messages, one to switch from the regular

con�guration fp; q; r; s; tg to the transitional con�guration fq; r; s; tg and one to

switch from the transitional con�guration fq; r; s; tg to the regular con�gura-

tion fq; r; s; t; u; vg. It may not be possible for processors q, r, s and t to deliver

all messages originated in the regular con�guration fp; q; r; s; tg, since some of

these messages from p may not have been received before p became isolated;

however, it can be guaranteed that in the transitional con�guration fq; r; s; tg

all messages originated by a processor of that con�guration have been deliv-

ered. Similarly, it may not be possible to deliver a message safe in the regular

con�guration fp; q; r; s; tg because no information is available as to whether p

had received that message before it became isolated, but it is possible to deliver

the message safe in the transitional con�guration fq; r; s; tg. The �rst Con�g-

uration Change message separates the messages that are delivered in the old

con�guration fp; q; r; s; tg from the messages that are delivered in the reduced

transitional con�guration fq; r; s; tg.

Next consider the example in Figure 4.16, a modi�cation of the example in

Figure 4.15. Here, a further problem occurs late in the membership algorithm

so that processors q and r do not complete the recovery algorithm steps 2-6,

while processors s, t, u and v do complete the steps and install the regular

con�guration fq; r; s; t; u; vg. It is impossible to guarantee that a processor will

install a con�guration only if it determines that all other members of that con-

4.3. THE RECOVERY ALGORITHM 61

uv

uv

(qr)stuv

stuv

qrst

pqrst

p

p

configuration
transitional

regular
configuration

qstuv

r

r

q

Figure 4.16: Regular and transitional con�gurations. The vertical lines

represent the total orders of messages that have been delivered in the

indicated con�guration, and the dashed horizontal lines represent Con-

�guration Change messages. The parentheses around q and r indicate

that these processors did not actually install the regular con�guration

fq; r; s; t; u; vg.

�guration will install it, because that would require common knowledge which

is impossible to achieve.

In this example, processor q is subsequently able to reinitiate the membership

algorithm to form and install the new ring fq; s; t; u; vg. During this second

attempt to form that ring, processors s, t, u and v are transitioning from the

regular con�guration fq; r; s; t; u; vg to the regular con�guration fq; s; t; u; vg but

processor q is still transitioning from the regular con�guration fp; q; r; s; tg to

the regular con�guration fq; s; t; u; vg, so processor q's transitional con�guration

is fqg.

Although processors q and r did not install transitional con�guration

fq; r; s; tg, processors s and t have accepted the guarantees of q and r that they

have received messages from s and t and may have delivered those messages as

safe in the transitional con�guration fq; r; s; tg. Consequently, since processors

q and r have received all of the messages needed for the transitional con�gura-

tion fq; r; s; tg and have acknowledged reception of those messages, they must

deliver those messages in the transitional con�guration they install even if, as

in this example, that con�guration is smaller.

62 CHAPTER 4. THE SINGLE-RING PROTOCOL

After the second Con�guration Change message, p and r are both members

of singleton con�gurations fpg and frg respectively and messages from other

processors are not delivered by p or r. When p or r rejoins the other processors

in some subsequent con�guration, the application programs must update their

states, using application-speci�c algorithms, to re
ect activities that were not

communicated while the system was partitioned. The Con�guration Change

messages warn the application that a membership change has occurred, so that

the application programs can take appropriate action based on the membership

change. Extended virtual synchrony guarantees a consistent order of message

delivery across a partition, which is essential if the application programs are to

be able to reconcile their states following repair of a failed processor or remerging

of the partitioned network.

4.4 Performance

The Totem protocol is designed to provide high performance. Reliable ordered

delivery is of little value if the throughput of the protocol is low or the latency to

delivery is high. E�ective
ow control is required to achieve desired performance

characteristics.

Flow Control

With point-to-point communication, positive acknowledgment protocols, such

as the sliding-window protocol [10], have been re�ned to provide excellent
ow

control. However, with broadcast communication, positive acknowledgment

protocols result in an excessive number of acknowledgments. Rate-controlled

protocols have attracted attention recently [54], but have the disadvantage when

used with broadcast protocols that the aggregate rate of all transmitters must

be controlled. The maximum transmission rate for each processor must be set

to a value that is unacceptably low for applications with bursty communication

patterns.

A basic characteristic of reliable broadcast and multicast protocols is that

the rate of broadcasting messages cannot exceed the rate at which the slowest

4.4. PERFORMANCE 63

processor can receive and process messages. At higher rates of broadcasting, the

input bu�er of the slowest processor will become full and messages will be lost.

Retransmission of those messages will increase the message tra�c and reduce

the e�ective transmission rate.

E�ective
ow control, capable of preventing message loss due to bu�er over-

ow at high transmission rates, is essential to the attainment of high throughput,

since retransmissions reduce the available bandwidth and increase the latency.

Existing broadcast protocols must be throttled at relatively low rates of broad-

casting to avoid high rates of message loss and, thus, exhibit poor performance

when the tra�c is bursty.

The Data Structures

Regular Token

The following �eld is added to the regular token:

� retrans round: The number of retransmissions sent in the last round of

the token.

Local Variables

Each processor maintains the following local variables:

� last token seq: The message sequence number on the token (token:seq)

last time it was received.

� window size: The number of messages which can be sent by all processors

during a rotation of the token.

� each time: The maximum number of messages which can be sent by this

processor during any visit of the token.

� last retrans: The number of retransmissions by this processor on the last

visit of the token.

� allowed to send: The number of messages this processor can send on this

token visit.

64 CHAPTER 4. THE SINGLE-RING PROTOCOL

The retrans round �eld of the token is initialized to zero when the token is

generated. The last token seq and last retrans �elds are intitialized to zero by

the processor in the membership algorithm during the formation of the ring.

The values for window size and each time are determined heuristically.

The Algorithm

The Totem protocol uses a simple
ow-control algorithm to control the number

of messages broadcast during one rotation of the token. If a processor is un-

able to process messages at the rate at which they are broadcast, one or more

messages will be in its input bu�er when the token arrives. Before processing

the token and broadcasting messages, a processor must empty its input bu�er.

Thus, the rate of broadcasting messages is reduced to the rate at which mes-

sages can be processed by that processor. If the window size is limited by the

size of each processor's input bu�er, bu�er over
ow cannot occur.

In practice, it is possible to increase the window size to a larger number

of messages than the input bu�er can contain. As the token rotates around

the ring, a processor can receive and process messages, freeing bu�er space for

subsequent messages in the same rotation. An appropriate value for window size

can be found by experimentation, but care must be taken to allow for processors

that may occasionally be heavily loaded and for other uncontrolled tra�c on

the network.

There is also a limit on the number of messages an individual processor is

allowed to send during one visit of the token. This limit contributes to fairness

in distributing window size among the processors on the ring and is speci�ed by

each time. Retransmissions are included in the number of messages sent. The

pseudocode executed by a processor to calculate the number of messages this

processor is allowed to send on this token visit is given in Figure 4.17.

Before forwarding the token a processor updates the token retrans round

�eld by subtracting last retrans and adding the number of messages retransmit

this token visit. The processor then sets last retrans to equal the number of

messages retransmit this token visit. The processor also set last token seq to

equal the seq �eld in the token.

4.4. PERFORMANCE 65

Flow Control

allowed to send := window size + each time �

(token.seq � last token seq + token.retrans round)

if (allowed to send > each time) then

allowed to send := each time

endif

if (allowed to send < 0) then

allowed to send := 0

endif

Figure 4.17: Algorithm executed by a processor or a gateway to deter-

mine how many messages can be sent on this token visit.

Although more sophisticated
ow control schemes can be used, they have

not proven necessary.

Analytical Model

The latency to order a message in the Totem single-ring protocol is a function

of the token rotation time. Under low loads, where the probability is small that

a processor is prevented by the
ow-control mechanism from broadcasting all

of its pending messages during each visit of the token, the latency to agreed

delivery is approximately one-half of a token rotation time and the latency to

safe delivery is approximately two token rotation times. Assuming that no mes-

sages are lost, we now calculate the token rotation time. We use the following

denotations:

N Number of processors on the ring

T Token rotation time

� Utilization of the communication medium

a Mean time to broadcast one message

r Ratio of the mean time to process and broadcast one message

to the mean time to broadcast

b Token processing and transmission time for one processor

m Mean number of messages broadcast by one processor

during one visit of the token

66 CHAPTER 4. THE SINGLE-RING PROTOCOL

M Maximum number of messages that all processors are allowed

to broadcast in any token rotation, i.e. window size

In the calculation we assume that the time to receive and process a message

is approximately equal to the time to process and broadcast the message. If

the receive time is substantially greater than the broadcast time, then a and

r should be derived from the time to receive messages rather than the time to

broadcast messages.

The useful utilization of the communication medium is given by

� =

Nma

Nb+Nmra

=

ma

b+mra

from which it follows that

a =

b�

m(1 � r�)

Thus, the token rotation time is

T = Nb+Nmra =

Nb

1� r�

Furthermore, the maximum token rotation time is Nb+Mra, while the maxi-

mum utilization of the communication medium is Ma=(Nb+Mra).

Simulation

A simulator has been built using the C programming language to allow study

and debugging of the Totem single-ring protocol [20, 21]. In the simulator,

the object code of the Totem single-ring protocol implementation is linked to

a simulated communication medium. The simulated communication medium

allows the injection of faults, partitions, and merges. The distributed nature and

high performance of the Totem single-ring protocol make it di�cult to study and

debug when running on an actual network. The simulator can instead be run

step-by-step and protocol behavior during failures can be studied in-depth. The

simulator also provides an environment in which systems with more processors

than are physically available can be studied.

A graphical interface for the simulator has also been developed [33]. The

graphical interface displays the current ring membership and delivery character-

istics for each of the processors. In particular, the monitor shows which messages

4.4. PERFORMANCE 67

Message Size in Bytes

M
es

sa
g

es
 O

rd
er

ed
 p

er
 S

ec
o

n
d

0 200 400 600 800 1000 1200 1400
500

600

700

800

900

1000

1100

1200

1200

Five Sun 4/IPC Processors
Ethernet

Figure 4.18: The number of ordered broadcast messages per second for

various message sizes for a network of �ve Sun 4/IPC processors running

the Totem single-ring protocol. The solid line indicates throughput when

the tra�c is generated by all the processors, and the dotted line shows

the throughput when the messages are generated by a single processor.

were delivered in the old, transitional, and new con�gurations respectively for

each processor.

Implementation

The Totem single-ring reliable ordering and membership protocol has been im-

plemented using the C programming language on a network of Sun 4/IPC work-

stations connected by an Ethernet. The implementation uses the standard UDP

broadcast interface within the Unix operating system (SunOS 4.1.1). One UDP

socket is used for all broadcast messages, and a separate UDP socket is used by

each processor to receive the token from its predecessor on the ring.

Measurements from the implementation show excellent performance. Figure

4.18 shows the number of messages ordered per second for messages of various

sizes. These measurements were made on a network of �ve Sun 4/IPC work-

stations with the window size set to the maximum value for which message loss

is negligible in order to maximize throughput. Note that with 1024 byte mes-

68 CHAPTER 4. THE SINGLE-RING PROTOCOL

Message Size in Bytes

U
ti

liz
at

io
n

 o
f

th
e

M
ed

iu
m

0 200 400 600 800 1000 1200 1400
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Five Sun 4/IPC Processors
Ethernet

Figure 4.19: The utilization of the Ethernet for various message sizes

for a network of �ve Sun 4/IPC processors running the Totem protocol.

The solid line indicates utilization when the tra�c is evenly distributed

across all �ve processors, and the dotted line shows the utilization when

the messages are generated by a single processor.

sages (window size = 70 when all 5 processors are sending), 810 messages are

ordered per second. Reducing the message size to 600 bytes results in over 900

ordered messages per second. Further reducing the message size to 4 bytes to

measure the protocol overhead results in 1130 messages ordered per second. As

can also be seen from Figure 4.18 the number of messages ordered per second is

relatively una�ected by the number of senders; similar throughput �gures are

obtained when all messages are broadcast by a single processor on the ring. The

highest prior rates for asynchronous fault-tolerant ordered broadcast messages

known to us for 1024 byte messages are about 300 messages per second for the

Transis protocol using the same equipment and for the Amoeba protocol [31]

using equipment of similar performance.

A concern about token-passing protocols, such as Totem, is that the token-

passing overhead reduces the transmission rate available for messages. Fig-

ure 4.19 depicts the useful utilization (excluding transmission of the token and

message headers) of the Ethernet achieved by the Totem protocol. With large

4.4. PERFORMANCE 69

Messages Ordered per Second

M
ill

is
ec

o
n

d
s

0 200 400 600 800 1000
0

20

40

60

80

Token Rotatio
n

Latency to

Agreed Delivery

Latency to

Safe Delivery

Five Sun 4/IPC Processors
Ethernet, 1000 Byte Messages

Figure 4.20: The mean token rotation time and the mean latency from

generation of a message until it is delivered in agreed order and in safe

order by all processors on the ring as a function of load.

messages, a utilization of about 70% is achieved; this may be compared to

the approximately 65% utilization that can be achieved by TCP transmitting

messages point-to-point from a single source to a single destination with the

same equipment. This high utilization is achieved by the single-ring protocol

regardless of whether the tra�c is distributed equally across the processors or

concentrated at a single source.

While Figure 4.18 depicts the maximum transmission rates measured us-

ing the Totem protocol over the Ethernet, Figure 4.20 considers performance

at lower, more typical loads with Poisson arrivals of messages and 1000 byte

messages. It shows the token rotation time and the latency from generation

of a message until it is delivered in agreed order by all processors on the ring.

At low loads (e.g., 400 ordered messages per second which is much more than

the maximum throughput for prior protocols), the latency achieved by Totem

is under 10 milliseconds. Even at 50% useful utilization of the Ethernet (625

messages per second), the latency is still only about 13 milliseconds. Note that

the latency to agreed delivery is slightly more than half the token rotation time

and the latency to safe delivery is approximately twice the token rotation time,

70 CHAPTER 4. THE SINGLE-RING PROTOCOL

except at very high loads where queueing delays dominate. Also note that the

latency increases linearly with the size of the membership. These latency results

were measured in the simulator and veri�ed on the implementation.

Also a concern with token passing protocols is the time to reach consensus

on membership and to begin rotation of the token after loss of the token. We

measured the time to membership by disabling the token retransmission mech-

anism and intentionally losing the token. In a test with the processors sending

1024 byte messages the time to complete the membership process, generate a

new token, and return to normal operation is on average 40 milliseconds plus the

token loss timeout; for these experiments the token loss timeout was 100 mil-

liseconds. With the token retransmission mechanism reactivated, the average

time to return to normal operation after loss of the token is 16 milliseconds.

4.5 Proof of Correctness

Membership

Uniqueness of Con�gurations

Theorem 4.1 Each con�guration identi�er is unique; moreover, at any time a

processor is a member of at most one con�guration.

Proof. On startup a processor forms a singleton ring containing only itself. On

forwarding the Commit token for a proposed new ring on its �rst rotation, a

processor abandons its current ring and becomes committed to the new ring.

The processor then forms a transitional con�guration consisting of members of

its old ring and new ring. If the processor installs the new ring, it delivers two

Con�guration Change messages. The �rst initiates a transitional con�guration

and terminates the processor's regular con�guration (old ring), and the second

initiates the regular con�guration (new ring) and terminates the transitional

con�guration. Thus, a processor is a member of at most one con�guration at a

time.

The identi�er of a con�guration (either regular or transitional) consists of

a \ring" sequence number (which is stored in stable storage) and the proces-

sor identi�er of the representative (which is chosen deterministically from the

4.5. PROOF OF CORRECTNESS 71

members). We now show that, if there is a processor that is a member of two

di�erent con�gurations C

1

and C

2

with the same representative identi�er, then

C

1

and C

2

have di�erent ring sequence numbers. Since processor identi�ers are

unique and do not change in time even if a processor fails and restarts, there is

a processor p that is the representative of both C

1

and C

2

. By the above, p is a

member of at most one con�guration at a time, say p is a member of C

1

before

p is a member of C

2

. Then, since the ring sequence number of C

2

is greater than

the maximum of the ring sequence numbers of the immediately prior con�gura-

tions of the members of C

2

when C

2

was formed, the ring sequence number of

C

2

is greater than the ring sequence number of C

1

. 2

Consensus

Theorem 4.2 All of the processors that install a con�guration determine that

the members of the con�guration have reached consensus on the membership.

Proof. The con�guration that a processor installs when it delivers a Con�g-

uration Change message is based on the ring that the processor installs. If a

processor installs a ring, then that processor was previously in the Commit state

and forwarded the Commit token twice. A processor forwards the Commit token

the �rst time only if the membership in the token is equal to the di�erence of

its my proc set and my fail set; otherwise, it discards the Commit token. When

a processor forwards the Commit token the second time, it determines that all

members of the ring have reached consensus on the membership. 2

Termination

Theorem 4.3 If a con�guration ceases to exist for any reason, such as proces-

sor failure, network partitioning or token loss, then within a bounded time every

processor of that con�guration will install a new con�guration or will fail before

doing so.

Proof. If a con�guration ceases to exist, then the token has either been lost

or discarded by a processor and each processor in the Operational state either

incurs a Token Loss timeout and shifts to the Gather state, or receives a Join

message and shifts to the Gather state.

72 CHAPTER 4. THE SINGLE-RING PROTOCOL

Because of the Consensus and Token Loss timeouts, a processor can spend

only a bounded time in the Gather state without increasing either my proc set

or my fail set. Because of the Token Loss timeout, a processor can spend only

a bounded time in the Commit state. Because of the Token Loss timeout and

failure-to-receive mechanism, a processor can spend only a bounded time in

the Recover state. Each time a processor returns to the Gather state from the

Commit or Recover state it increases either my proc set or my fail set before

leaving the Gather state. In an n-processor system, a processor can increase

one or the other of these sets at most 2n�2 times before it reaches consensus on

a singleton membership with n processors in my proc set and n � 1 processors

other than itself in my fail set. If a processor reduces the membership to a

singleton set containing only itself, then it will necessarily install the singleton

ring; otherwise, it will install a new ring with a larger membership. In either

case, the processor will install a transitional con�guration and a new regular

con�guration. 2

Con�guration Change Consistency

Theorem 4.4 Processors that are members of the same con�guration C

1

de-

liver the same Initiate Con�guration C

1

message to begin the con�guration.

Furthermore, if two processors install a con�guration C

2

directly after C

1

, then

the processors deliver the same Con�guration Change message to terminate C

1

and initiate C

2

.

Proof. If a processor installs con�guration C

1

, it delivers a Con�guration

Change message containing the Initiate Con�guration C

1

message and the mem-

bership of C

1

. Thus, if p and q are both members of C

1

, they have delivered

the same Initiate Con�guration C

1

message.

If a processor installs con�guration C

2

directly from C

1

, it delivers a Con-

�guration Change message containing the Terminate Con�guration C

1

message

and the Initiate Con�guration C

2

message.

Thus, if p and q both install C

2

, they deliver the same Con�guration Change

message to terminate C

1

and initiate C

2

. 2

4.5. PROOF OF CORRECTNESS 73

Ordering

Reliable Delivery

Theorem 4.5 Each message m has a unique identi�er.

Proof. The identi�er of a regular message m consists of the ring id of the regu-

lar con�guration in which m was originated, the message sequence number of m

(which is greater than 0), and the conf id 0. By Theorem 4.1, the con�guration

identi�ers are unique. By the single-ring ordering protocol, the processor that

originates m increments the seq �eld of the token and sets the sequence number

of m to this seq ; thus, within a con�guration the message sequence number of

m is unique. Since the conf id of a regular message is 0 and the conf id of a

Con�guration Change message is a ring id which is greater than 0, the conf id

�eld distinguishes a regular message from a Con�guration Change message.

The identi�er of a Con�guration Change message that initiates a regular

con�guration consists of the ring id of that con�guration, the message sequence

number 0, and the identi�er of the old transitional con�guration from which

this processor is transitioning as the conf id �eld. The identi�er of a Con�g-

uration Change message that initiates a transitional con�guration consists of

the ring id of the preceding regular con�guration, the largest message sequence

number on the old ring, and the identi�er of the new transitional con�guration

to which this processor is transitioning as the conf id �eld. If two Con�guration

Change messages have the same source ring identi�er, then the conf id is either

the identi�er of a transitional con�guration preceding the regular con�guration

or the identi�er of a transitional con�guration following the regular con�gura-

tion. By Theorem 4.1, con�guration identi�ers are unique. The statement now

follows. 2

Theorem 4.6 If processor p delivers message m, then p delivers m only once.

Moreover, if processor p delivers two di�erent messages, then p delivers one of

those messages strictly before it delivers the other.

Proof. If processor p delivers messagem, then p deliversm either in the regular

con�guration in which it was originated or in an immediately following transi-

74 CHAPTER 4. THE SINGLE-RING PROTOCOL

tional con�guration. By Theorem 4.14, within those con�gurations p delivers

messages in sequence number order. 2

Theorem 4.7 A processor p delivers its own messages unless it fails.

Proof. Assume that processor p does not fail. If p is a member of a singleton

con�guration and thus of a singleton ring, then it delivers m immediately. Sup-

pose now that p is a member of a con�guration and thus of a ring with two or

more members. There are three possibilities: (1) Either the aru in the token

will advance above the sequence number of m and will not be lowered again,

in which case p will deliver m, or (2) the failure-to-receive mechanism will be

invoked, or (3) the membership algorithm will be invoked due to a Token Loss

timeout or reception of a foreign message. In cases (2) and (3), by Theorem

4.3, p will install a new ring and thus a new con�guration within a bounded

time. By Theorem 4.12, p will deliver all messages that were originated by the

members of my deliver memb and thus of the transitional con�guration associ-

ated with the regular con�guration it installs; in particular, p will deliver its

own message m. This may involve reduction to a singleton con�guration. 2

Theorem 4.8 A processor p delivers all of the messages originated in its reg-

ular con�guration C unless a con�guration change occurs.

Proof. If no con�guration change occurs, then the failure-to-receive mechanism

is not invoked. Let m be a message that has been broadcast by a member of C.

When processor p receives the token, either p has received m or p determines

from the seq �eld of the token that it did not receive m and thus includes the

sequence number of m in the rtr �eld of the token. Because the number of mes-

sages broadcast in C with sequence numbers at most equal to that of m is �nite,

the number of processors in C is �nite, and the failure-to-receive mechanism is

not invoked, each processor in C will eventually receive and deliver all messages

with sequence numbers at most equal to that of message m, in particular, m

itself. 2

4.5. PROOF OF CORRECTNESS 75

Theorem 4.9 If processor p delivers message m originated in con�guration C,

then p is a member of C and p has installed C. Moreover, p delivers m in C

or in a transitional con�guration between C and the next regular con�guration

it installs.

Proof. According to the algorithm, processor p delivers message m originated

in con�guration C only after it has installed C (delivered Initiate Con�guration

C). Moreover, p delivers m either as a member of the con�guration C in which

m was originated or as a member of the subsequent transitional con�guration

that consists of processors in both C and the next regular con�guration that p

installs. 2

Theorem 4.10 If processors p and q are both members of consecutive con-

�gurations C

1

and C

2

, then p and q deliver the same set of messages in C

1

before delivering the Con�guration Change message that terminates C

1

and ini-

tiates C

2

.

Proof. There are two cases to consider: (1) C

1

is a regular con�guration and

C

2

is a transitional con�guration, and (2) C

1

is a transitional con�guration and

C

2

is a regular con�guration.

In case (1) processors p and q have exchanged messages and have the same

set of messages for C

1

that were rebroadcast on the new ring following C

2

with sequence numbers up through my install seq. By the recovery algorithm,

p and q both deliver in C

1

all messages up to a gap in the sorted message

sequence or a message requiring safe delivery with a sequence number greater

than high ring delivered. (A message with sequence number less than or equal

to high ring delivered was delivered in C

1

by some processor and, thus, can

be delivered in C

1

by this processor.) Processors p and q then deliver the

Con�guration Change message that terminates C

1

and initiates C

2

.

In case (2) processors p and q must both have been members of the regular

con�guration C

0

for which C

1

is the transitional con�guration between C

0

and

C

2

. By case (1) p and q have the same set of messages for C

0

and have delivered

the same subset of those messages before delivering the Con�guration Change

message that terminates C

0

and initiates C

1

. By the recovery algorithm, p and

76 CHAPTER 4. THE SINGLE-RING PROTOCOL

q both deliver in C

1

all remaining messages from C

0

up to the �rst gap in the

sorted message sequence (which were not delivered before the �rst Con�gura-

tion Change message) and also all subsequent messages that were originated

in C

0

by processors in my delivery memb. They then deliver the Con�guration

Change message that terminates C

1

and initiates C

2

. 2

Delivery in Causal Order for Con�guration C

Theorem 4.11 If m

1

precedes m

2

in the Lamport causal order and processor

p delivers both m

1

and m

2

, then p delivers m

1

before p delivers m

2

.

Proof. First we show for Lamport's causal precedence relations that if pro-

cessor q originates message m

3

before processor q originates message m

4

or,

if q receives and delivers m

3

before q originates m

4

, then the identi�er of

m

3

is less than the identi�er of m

4

in the lexicographical order of identi�ers

(src ring id,seq,conf id).

The local variable my ring id.seq is recorded to stable storage to ensure that

any message originated by q after q recovers from a failure is ordered after any

message received or originated by q before its failure.

When processor q originates a message, it increments the seq �eld of the

token and sets the sequence number of the message to this seq, ensuring that

the sequence number of the message is higher than that of any message already

originated or delivered on that ring. The ring id of the message is the ring

identi�er of the ring of which q was a member when it originated the message.

The ring id.seq of that ring is greater than the ring id.seq of any previous ring

of which q was a member.

By the transitivity on the lexicograpical order of identi�ers, if m

1

precedes

m

2

in the closure of the Lamport causal precedence relations, then the identi�er

of m

1

is less than the identi�er of m

2

.

By Theorem 4.17, if the identi�er of m

1

is less than the identi�er of m

2

, then

m

1

precedes m

2

in the Global Delivery Order. By Theorem 4.18, if p delivers

both m

1

and m

2

, and if m

1

precedes m

2

in the Global Delivery Order, then p

delivers m

1

before p delivers m

2

. 2

4.5. PROOF OF CORRECTNESS 77

Theorem 4.12 If processor p delivers message m

2

, and m

1

precedes m

2

in the

causal order for con�guration C, then p delivers m

1

before p delivers m

2

.

Proof. The sequence number of the Initiate Con�guration message for each

regular con�guration has the sequence number 0 and the regular messages begin

with sequence number 1.

By a simple induction based on message sequence numbers it follows that, for

any message m

1

originated in con�guration C that precedes m

2

in the causal

order, the sequence number of m

1

is at most equal to the sequence number

of m

2

. Furthermore, if the processor that originated m

1

is di�erent from the

processor q that originatedm

2

, then the sequence number ofm

1

is at most equal

to processor q's my aru when q originated m

2

.

Now either processor p delivers message m

2

in con�guration C or p delivers

m

2

in the transitional con�guration C

2

following C. Suppose then that pro-

cessor p delivers message m

2

in the transitional con�guration C

2

following C

and that processor q originated m

2

. By the delivery guarantee, p delivers all

messages with sequence numbers up to the �rst gap in the message sequence

and also all messages originated by processors in p's my deliver memb with

sequence numbers up through high ring delivered. There are two cases to con-

sider: (1) q is a member of p's my deliver memb, and (2) q is not a member of

p's my deliver memb.

(1) Sincem

1

precedesm

2

in the causal order and since q originatedm

2

, either

q also originated m

1

and thus, by the delivery guarantee, p has deliveredm

1

, or

q did not originate m

1

and the sequence number of m

1

is less than or equal to q's

my aru when q originated m

2

. In the latter case, q has the complete sequence

of messages up through m

1

. Since p delivered m

2

in C

2

, the message exchange

was completed and p also has the complete sequence of messages up through

m

1

and thus, by the delivery guarantee, p delivers m

1

before p delivers m

2

.

(2) Since p delivers m

2

and q is not a member of p's my deliver memb, the

sequence number of m

2

is less than that of a message in the �rst gap of the

message sequence. Since the sequence number of m

1

is less than or equal to

that of m

2

, by the delivery guarantee, p delivers m

1

before p delivers m

2

.

By the algorithm, a processor p delivers a Terminate Con�guration mes-

sage with an Initiate Con�guration message. After the Initiate Con�guration

78 CHAPTER 4. THE SINGLE-RING PROTOCOL

message is delivered, p no longer delivers messages in the old con�guration so

the Terminate Con�guration message is delivered as the last message in the old

con�guration. 2

Delivery in Agreed Order for Con�guration C

Theorem 4.13 The Con�guration Delivery Order for C is a total order.

Proof. By Theorem 4.5, the messages delivered in C have unique sequence

numbers which, as a subset of the non-negative integers, form a total order. 2

Theorem 4.14 If processor p delivers message m

2

in con�guration C and m

1

is any message that precedes m

2

in the Delivery Order for Con�guration C, then

p delivers m

1

in C before p delivers m

2

.

Proof. If m

1

is any message that precedes m

2

in the Con�guration Delivery

Order for C, then the sequence number of m

1

is at most equal to the sequence

number of m

2

. By the algorithm, every processor in C delivers messages in

sequence number order and does not deliver message m

2

until it has delivered

all messages in the Con�guration Delivery Order for C with smaller sequence

numbers. 2

Delivery in Safe Order for Con�guration C

Theorem 4.15 If a processor delivers message m in con�guration C and the

originator of m requested safe delivery, then the processor has determined that

each processor in C has received m, and will deliver m or will fail before in-

stalling a new regular con�guration.

Proof. Let q be a processor in C that does not fail before installing a new

regular con�guration. There are two cases to consider.

(1) To deliver m in safe order in regular con�guration C, processor p must

forward the token on two consecutive rotations with the aru at least equal to

the sequence number of m. Thus, p determines that, when q forwarded the

4.5. PROOF OF CORRECTNESS 79

token on the �rst of those rotations, q's my aru must have been at least equal

to the sequence number of m. Consequently, p determines that, if the token is

not lost, then q will receive the token on the second of those rotations with the

aru at least equal to the sequence number of m and will then deliver m.

Moreover, p determines that, if the token is lost, then the �rst gap in the

sequence of messages received by q must correspond to a sequence number

greater than that of m and, thus, that q will deliver m before it installs a

subsequent regular con�guration.

(2) To deliver m in safe order in transitional con�guration C, processor p

must forward the token on three consecutive rotations with the retrans
g set

to false and, on the last two of those rotations, with the aru at least equal to

my install seq (my install seq is the largest new ring sequence number of all old

ring messages retransmitted on the new ring and, thus, is at least equal to the

sequence number of m on the new ring). Processor p then determines that each

processor q forwarded the token on two consecutive rotations with its retrans
g

set to false and on one rotation with my aru at least equal to my install seq and

my deliver memb equal to C. Thus, p determines that q has received m and

will deliver m in whichever con�guration q subsequently installs. 2

Extended Virtual Synchrony

Theorem 4.16 If processor p delivers message m in con�guration C, then the

requirements for agreed or safe delivery are satis�ed.

Proof. This follows from the preceding theorems. 2

Theorem 4.17 The Global Delivery Order is a total order.

Proof. By Theorem 4.5, each message has a unique identi�er. The identi�er

of a regular message m consists of the ring id of the regular con�guration on

which m was originated, the message sequence number for m, and the conf id

0. The identi�er of a Con�guration Change message that initiates a regular

con�guration consists of the ring id of that con�guration, the message sequence

number 0, and the identi�er of the old transitional con�guration from which

80 CHAPTER 4. THE SINGLE-RING PROTOCOL

this processor is transitioning as the conf id �eld. The identi�er of a Con�gu-

ration Change message that initiates a transitional con�guration consists of the

identi�er of the preceding regular con�guration, the largest message sequence

number on the old ring, and the identi�er of the transitional con�guration to

which this processor is transitioning as the conf id �eld.

The precedes relation of the Global Delivery Order is the lexicographical

order on the set of identi�ers (ring id,seq,conf id). This lexicographical order is

a total order and, thus, the Global Delivery Order is a total order. 2

Theorem 4.18 If processor p delivers messages m

1

and m

2

, and m

1

precedes

m

2

in the Global Delivery Order, then p delivers m

1

before p delivers m

2

.

Proof. Let (ring id

1

,seq

1

,conf id

1

) and (ring id

2

,seq

2

,conf id

2

) be the iden-

ti�ers of messages m

1

and m

2

, respectively. By Theorem 4.9, a processor only

delivers messages originated in con�gurations of which it is a member and,

thus, processor p is a member of the con�gurations with identi�ers ring id

1

and

ring id

2

. Without loss of generality, we assume that (ring id

1

,seq

1

,conf id

1

) <

(ring id

2

,seq

2

,conf id

2

). The proof is an exhaustive case analysis.

If ring id

1

< ring id

2

, then p was a member of the con�guration with identi-

�er ring id

1

before it was a member of the con�guration with identi�er ring id

2

,

because the ring sequence number is increased each time a processor shifts to

the Recover state within the membership algorithm. According to the algo-

rithm, processor p delivers all messages that were originated on the ring with

identi�er ring id

1

before it delivers any message that was originated on the ring

with identi�er ring id

2

.

If ring id

1

= ring id

2

, seq

1

< seq

2

, conf id

1

= 0, and conf id

2

= 0, then

m

1

and m

2

are regular messages originated in the regular con�guration with

identi�er ring id

1

. Since regular messages originated in the same con�gura-

tion are delivered in sequence number order, processor p delivers m

1

before p

delivers m

2

.

If ring id

1

= ring id

2

, seq

1

� seq

2

, conf id

1

= 0 and conf id

2

6= 0, then m

1

is a regular message and m

2

is a Con�guration Change message that initiates

a transitional con�guration following the regular con�guration with identi�er

4.5. PROOF OF CORRECTNESS 81

ring id

1

. This Con�guration Change message is delivered after the regular

message with sequence number seq

2

and, hence, after m

1

.

If ring id

1

= ring id

2

, seq

1

< seq

2

, conf id

1

6= 0 and conf id

2

= 0, then

m

1

is a Con�guration Change message and m

2

is a regular message delivered

in the con�guration initiated by m

1

. This Con�guration Change message is

delivered before the �rst regular message delivered in that con�guration and,

hence, before m

2

.

If ring id

1

= ring id

2

, seq

1

= 0, seq

2

> 0, conf id

1

6= 0 and conf id

2

6= 0,

then m

1

is a Con�guration Change message that initiates a regular con�gu-

ration and m

2

is a Con�guration Change message that initiates a transitional

con�guration and terminates the regular con�guration initiated by m

1

. By the

algorithm, processor p delivers m

1

before p delivers m

2

.

If ring id

1

= ring id

2

, seq

1

> 0, seq

2

> 0, conf id

1

6= 0 and conf id

2

6= 0,

then m

1

and m

2

are both Con�guration Change messages that initiate di�erent

transitional con�gurations and terminate the same regular con�guration. By

the algorithm, no processor delivers both m

1

and m

2

.

If ring id

1

= ring id

2

, seq

1

= 0, seq

2

= 0, conf id

1

6= 0, and conf id

2

6= 0,

then one of three cases arises: (1) Messages m

1

and m

2

are Con�guration

Change messages that initiate the same regular con�guration and terminate

di�erent transitional con�gurations. By the algorithm, no processor delivers

both m

1

and m

2

. (2) Messages m

1

and m

2

are Con�guration Change messages

that initiate di�erent transitional con�gurations and terminate the same regular

con�guration, and no regular message was delivered in the regular con�gura-

tion. By the algorithm, no processor is a member of two di�erent transitional

con�gurations that follow the same regular con�guration. By the algorithm, no

processor delivers both m

1

and m

2

. (3) Message m

1

is a Con�guration Change

message that initiates a regular con�guration and m

2

is a Con�guration Change

message that initiates a transitional con�guration following that regular con�g-

uration, and no regular message was delivered in the regular con�guration. In

this case, conf id

1

is the identi�er of a transitional con�guration that precedes

the regular con�guration with identi�er ring id

1

, and conf id

2

is the identi�er

of a transitional con�guration that follows that regular con�guration. By the

algorithm, processor p delivers m

1

before p delivers m

2

.

82 CHAPTER 4. THE SINGLE-RING PROTOCOL

In any case, processor p deliversm

1

before p delivers m

2

. The Global Deliv-

ery Order is, thus, the set of messages delivered by all of the processors.2

4.6 Summary

The single-ring protocol provides fast reliable ordered delivery of messages in

a broadcast domain where processors may fail and the network may become

partitioned. A token circulating around a logical ring imposed on the broadcast

domain is used to recover lost messages and to order messages on the ring. The

protocol provides delivery of messages in agreed and safe order.

The membership algorithm handles processor failure and recovery, network

partitioning and remerging, and loss of all copies of the token. The concept

of extended virtual synchrony has been introduced to ensure consistent actions

by processors that fail and are repaired with their stable storage intact and

in networks that partition and remerge. A recovery algorithm that maintains

extended virtual synchrony during recovery after a failure has been provided.

The
ow-control algorithm of Totem avoids message loss due to over
ow of

the input bu�ers and provides substantially higher throughput than existing

total ordering protocols. With the high performance of the single-ring protocol,

there is no need to provide a weaker message ordering service, such as partially

ordered causal delivery, because totally ordered agreed delivery can be provided

at no greater cost. Moreover, partially ordered causal delivery may lead to

inconsistencies in di�erent components of a partitioned network.

Although the single-ring protocol was originally designed to be executed by

processors in a local-area network, it can be used on top of any communication

protocol that provides unreliable multicast or broadcast communication; a single

broadcast domain is not necessarily con�ned to a local-area network. The single-

ring protocol can also be executed by a subset of the processors in a local-area

network.

Chapter 5

The Multiple-Ring Protocol

The multiple-ring protocol provides agreed and safe delivery of messages across

broadcast domains interconnected by gateways, as well as membership and

topology maintenance. It uses the single-ring total ordering algorithm to provide

reliable ordered delivery within each broadcast domain; the gateways forward

messages between broadcast domains. Timestamps in messages are used to

create a global ordering of messages that respects causality and is consistent

across the entire network. The timestamp is written periodically to stable stor-

age. When a processor comes up, it reads the value of the timestamp from

stable storage and increments that value.

Delivery of messages in total order across the network is relatively straight-

forward if topology changes never occur. Intuitively, a topology is a set of rings

(con�gurations) such that there is a communication path between any two pro-

cessors that are members of rings in this set. A topology change is inevitable

when a failure, restart, partition or remerge event occurs. The gateways exe-

cuting the multiple-ring membership algorithm use the Con�guration Change

messages from the single-ring membership algorithm to identify changes to net-

work topology information. Network Topology messages are used to inform the

gateways and processors on a ring of the network topology. Topology Change

messages are sent by a gateway to notify the other gateways and processors in

the network of a change in the topology due to a con�guration change. Topology

Change messages are delivered to the application.

84 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

The gateways perform the same functions as the processors; in particular,

they can send messages from, and deliver messages to, the application. Besides

forwarding messages, each gateway maintains the current view of the network

topology. An early version of the protocol is described in [1].

In this chapter we use the term ring to mean either regular con�guration

or transitional con�guration, and con�guration change to mean a change to

either a regular con�guration (ring) or to a transitional con�guration within

the single-ring protocol. The term con�guration used in the statement of the

requirements for the protocol in Chapter 3 should be interpreted as, and is

replaced by, topology in this chapter. We use the term processor to mean either

processor or gateway unless explicitly stated otherwise. In the multiple-ring

protocol messages are ordered by timestamp, source ring identi�er, message

type and con�guration identi�er, but we will often simply say that they are

ordered by timestamp.

5.1 The Total Ordering Algorithm

First we describe the operation of the Totem multiple-ring total ordering algo-

rithm without considering topology changes. The di�cult task of dealing with

topology changes is considered in Section 5.2. Pseudocode for the total ordering

algorithm is included in Figures 5.1, 5.3 and 5.4.

The Data Structures

Local Data Structures

Each processor and gateway maintains the following data structures to track

the messages that are received and to implement ordering:

For each ring in the network,

� ring id: The unique ring identi�er generated by the single-ring pro-

tocol.

� recv msgs: A list of received messages that were originated by a

processor on the ring and that have not yet been delivered to the

5.1. THE TOTAL ORDERING ALGORITHM 85

application. This list is sorted in increasing order by timestamp and

message type.

� max timestamp: The highest timestamp of a message received that

was originated on the ring.

� min timestamp: The lowest timestamp of a message in recv msgs for

the ring. If there are no messages in recv msgs, then min timestamp

equals max timestamp.

The ring table contains an entry for each ring (regular and transitional con�g-

uration) in the network with the above information.

For each directly attached ring

� my guar vector: The length of my guar vector is the number of rings

in the network. Each vector component contains the value of the

highest timestamp of a message received for the corresponding ring.

For the entire network

� cand msgs: A sorted list containing the lowest entry in recv msgs for

each ring. This list is kept in increasing order sorted by (timestamp,

source ring identi�er, message type, conf). If recv msgs for a ring is

empty, then the entry in cand msgs for the ring is (min timestamp,

ring identi�er, regular, 0).

� guarantee: An array with rows that are the guarantee vectors re-

ceived from the gateways on the other rings, one row for each ring

in the network. Each column of the array corresponds to messages

originated on a particular ring.

Maintained only by the gateways

� gway id: The identi�er of this gateway. The gway id is chosen de-

terministically from the two single-ring processor identi�ers for this

gateway.

86 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

Added to the single-ring protocol

� my timestamp: The highest message timestamp known to this pro-

cessor.

� my stable timestamp: The value of the timestamp last written to

stable storage.

� timestamp interval: A constant that determines how often the times-

tamp is written to stable storage.

� my future ring seq: The highest ring sequence number known to this

processor.

The values ofmy stable timestamp andmy future ring seq, and of the timestamp

and ring sequence number in stable storage are all initially 0. The value of the

constant timestamp interval is determined as a con�guration parameter.

When a processor comes up either initially or after a failure, it is a member

of one ring for each interface to a broadcast domain. The number of compo-

nents of my guar vector is initialized to the number of interfaces to broadcast

domains; each component has an initial timestamp of �1. The rows of the guar-

antee array correspond to the my guar vectors for the directly attached rings.

My timestamp and the min timestamp and max timestamp for each ring are

set to zero; recv msgs for each ring is empty. The processor reads the value

of my stable timestamp from stable storage. It then sets my stable timestamp

to my stable timestamp + timestamp interval. The processor writes the value

of my stable timestamp to stable storage and waits for the completion of that

write. It then sets my timestamp to the value of my stable timestamp.

On receipt of a Con�guration Change or Topology Change message intro-

ducing a new ring, a processor adds the data structure for the new ring to the

ring table. The ring id for the new ring is obtained from the Con�guration

Change or Topology Change message. The max timestamp and min timestamp

are set to the timestamp in the Con�guration Change or Topology Change mes-

sage, recv msgs is set to empty, and a new entry corresponding to this ring is

added to cand msgs.

5.1. THE TOTAL ORDERING ALGORITHM 87

Regular Message

In addition to the single-ring protocol header, each regular message has a

multiple-ring protocol header containing the following �elds:

� src sender id: The identi�er of the processor that originated the message.

� timestamp: The message timestamp.

� src ring id: The identi�er of the ring on which the message was originated.

� type: Regular.

� conf id: 0

The last four �elds constitute the identi�er of the message. The src sender id,

timestamp, and src ring id �elds are set by the single-ring protocol on trans-

mission of the message at the site that generated the message. These �elds are

not changed when a message is forwarded or retransmitted. The sender id, seq

and ring id in the single-ring protocol header are reset each time the message

is forwarded to a new ring.

Guarantee Vector Message

In addition to the �elds in a regular message, each Guarantee Vector message

contains the following �eld:

� guar vector: The currentmy guar vector for a ring containing the gateway

that originated the Guarantee Vector message.

The src ring id �eld of the Guarantee Vector message is set to the ring identi�er

of the ring corresponding to my guar vector.

Guarantee Vector messages are broadcast periodically by the gateways to the

other gateways and processors in the network. The timestamp of a Guarantee

Vector message assures a recipient that it will not receive a message with a

lower timestamp from the source ring of the Guarantee Vector message; this

allows messages to be delivered in agreed order. The contents of a Guarantee

Vector message indicate which messages have been received from other rings

by the gateways and processors on the source ring of the Guarantee Vector

88 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

if my guar vector[msg source ring] < msg.timestamp then

my guar vector[msg source ring] := msg.timestamp

endif

if msg.timestamp <= msg source ring.max timestamp then

discard message

else

if amgateway then

forward message

endif

source ring.max timestamp := msg.timestamp

add message to recv msgs of source ring

if recv msgs of msg source ring contains only one message then

source ring.min timestamp := msg.timestamp

update entry for source ring in cand msgs

endif

call deliver msgs

endif

Figure 5.1: Algorithm executed by a processor on receipt of a regular message.

message; this allows messages to be delivered in safe order. Guarantee Vector

messages are forwarded throughout the network, but they are not delivered to

the application.

The Algorithm

The multiple-ring protocol relies on the single-ring total ordering algorithm to

provide reliable ordered delivery of messages within a broadcast domain. Mes-

sage sequence numbers remain local to a ring and cannot be used for ordering

across the entire network; instead, messages are ordered by timestamp.

We �rst describe the mechanisms added to the single-ring protocol to handle

the timestamping of messages. In addition to the �elds described in Chapter 4,

the Regular and Commit tokens contain a timestamp �eld. When a new ring is

being formed, the timestamp �eld in the Commit token is used to determine the

highest my timestamp of any of the processors on the ring. On the �rst rotation

of the Commit token, a processor compares my timestamp to the timestamp

�eld in the Commit token and sets the timestamp �eld to the larger of the two

values.

5.1. THE TOTAL ORDERING ALGORITHM 89

The timestamp �eld in the regular token ensures that the timestamp or-

der on messages originated on a ring obeys the causal order for the topology.

When a processor receives a message or the token, it sets my timestamp to the

larger of my timestamp and the timestamp �eld in the message or token. For

each new message it broadcasts, a processor increments my timestamp and sets

the timestamp �eld in the message to my timestamp. Before forwarding the

token, a processor sets the timestamp �eld in the token to my timestamp. The

timestamp �eld in the token ensures strictly increasing timestamps for messages

generated on the ring. If any of the above actions increments my timestamp to

a value greater than or equal to my stable timestamp plus timestamp interval,

then the processor sets my stable timestamp to my timestamp, and writes

my stable timestamp to stable storage before broadcasting the message or for-

warding the token.

Each time a gateway forwards a message onto another ring, it sets

my timestamp to the larger of my timestamp and the timestamp in the mes-

sage. A forwarded or retransmitted message retains the timestamp it was given

when it was originated. This ensures that the next new message broadcast by

a gateway has a higher timestamp than any message previously forwarded by

the gateway.

Each time a processor or gateway receives a forwarded message, it sets

my future ring seq to the larger of my future ring seq and the src ring id.seq

of the forwarded message. If my future ring seq has changed, then it is written

to stable storage before the message is forwarded. When a new ring (regu-

lar con�guration) is being formed, the ring id.seq of the new ring is four plus

the largest of the my future ring seq for any of the processors on the new ring.

(The ring sequence of the ring id of the transitional con�guration is two plus the

largest of the my future ring seq for any of the processors on the new ring. One

or three plus the largest of the my future ring seq is the ring sequence number

of a transitional con�guration consisting of only the processor itself if such a

con�guration must be used to provide safe delivery of messages.) When the

processor shifts to the Recover state and writes the my ring id.seq to stable

storage, it also sets my future ring seq to my ring id.seq. My future ring seq en-

90 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

SRP SRP

Application

MRP

Broadcast domain 1 Broadcast domain 2

Figure 5.2: The messages broadcast on a directly attached ring by a gate-

way are messages that were generated by an application process executing

at the gateway or messages that were delivered by the Totem Single-Ring

Protocol (SRP) to the Totem Multiple-Ring Protocol (MRP) and were

forwarded by a gateway.

sures that the causality relations are maintained when two messages originated

on di�erent rings have the same timestamp.

A processor or gateway executing the single-ring protocol stores messages

received from the application in a FIFO bu�er until it can broadcast them on the

local ring. A gateway also places messages forwarded from the other single-ring

protocol executing at the gateway in the bu�er, as shown in Figure 5.2. When a

message that was generated by the application at this processor is removed from

this bu�er, the message's timestamp is set to my timestamp and my timestamp

is incremented. The message is then broadcast on the far-side ring.

Delivery of Messages in Agreed Order

The key to agreed ordering in the multiple-ring protocol is the fact that messages

originated on a ring are forwarded through the network in order. Messages

broadcast on a ring are delivered by the single-ring protocol to the multiple-

ring protocol executing at a gateway or processor in sequence number order.

Messages are forwarded onto a ring by a gateway in the order in which they

are received from the single-ring protocol. A forwarded message is given a new

sequence number, but retains its old timestamp, for each new ring onto which it

5.1. THE TOTAL ORDERING ALGORITHM 91

if recv msgs of low entry in cand msgs not empty then

cur msg := the low message in recv msgs of the

low entry in cand msgs

if cur msg.type = agreed then

deliver cur msg

else if cur msg.type = safe then

if for all i guarantee[i][source lan] >= cur msg.timestamp then

deliver cur msg

endif

endif

call deliver msgs

endif

Figure 5.3: Deliver msgs routine executed by processors and gateways to

deliver a message.

is forwarded. On a new ring, messages are delivered to the multiple-ring protocol

executing at a processor in sequence number order for that ring. Messages are

then delivered to the application by a processor executing the multiple-ring

protocol in the order of (timestamp, src ring id, type, conf id).

Since the messages generated on any one ring are forwarded in order through

the network, each gateway and processor can record a max timestamp in

ring table for each ring; all messages from that ring with lower timestamps

must already have been received. If a gateway receives a regular message with a

timestamp less than the max timestamp of the source ring, it discards the mes-

sage as a redundant message. This mechanism allows a processor to identify

redundant copies of messages forwarded by multiple gateways.

To deliver messages in agreed order, a processor �rst determines the low-

est entry in cand msgs. Messages with the same timestamp are ordered by

src ring id and message type. If the lowest entry in cand msgs corresponds to

a message for which agreed delivery was requested, the message is delivered.

If the recv msgs list corresponding to the lowest entry in cand msgs is empty,

no further messages can be ordered until a message from that ring is received,

because the next message from that ring may have a lower timestamp than the

messages that have been received from the other rings. A processor can deliver

92 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

for all i do guarantee[msg.source][i] :=

MAX(guarantee[msg.source][i], msg.guar vector[i])

endfor

Figure 5.4: Algorithm executed by processors and gateways on receipt of

a Guarantee Vector message.

a message in agreed order only after it has delivered all other messages with

lower timestamps.

Delivery of messages in agreed order across a network requires a processor

to delay delivery of a message until all preceding messages in the total order

have been delivered. There may be signi�cant delays in forwarding messages

through the network, but such delays are unavoidable.

Delivery of Messages in Safe Order

Delivery of a message in safe order requires information about whether the

message has been received by all of the other processors in the network. A

message to be delivered in safe order is originated with a request for safe delivery

in its header. When a processor executing the single-ring protocol delivers a

message in safe order, all of the other processors on that local ring must have

received the message.

A processor executing the multiple-ring protocol uses my guar vector to

record, for each directly attached ring, the messages that have been received

from the single-ring protocol. A component of my guar vector corresponding to

a particular ring is greater than or equal to the timestamp of a safe message

only if that message is safe on the ring (has been received by every processor

on the ring).

Gateways periodically create and broadcast Guarantee Vector messages.

When a processor executing the multiple-ring protocol receives a Guarantee

Vector message, it compares the guar vector in the message with the appropri-

ate row of its local guarantee array and changes a component of the row to the

corresponding guar vector component if the vector component contains a higher

5.1. THE TOTAL ORDERING ALGORITHM 93

timestamp. The pseudocode executed by a processor or gateway on receipt of

a Guarantee Vector message is given in Figure 5.4.

To deliver a message in safe order, a processor executing the multiple-ring

protocol must wait until all entries in the column of the guarantee array, corre-

sponding to the ring on which the message was generated, contain timestamps

greater than or equal to the timestamp of the message. This guarantees that

the message has been received by each processor in the network, and will be

delivered by that processor unless it fails. The array is checked each time a

message for which safe delivery was requested is the lowest entry in cand msgs.

Gathering the additional knowledge required for delivery of a message in safe

order may delay delivery of messages with higher timestamps.

Example

The message ordering mechanisms of the multiple-ring protocol provide consis-

tent agreed and safe message ordering across an entire network. A processor

delivers a message in agreed order only after it has delivered all messages that

precede it in the total order. As an example, consider the network shown in

Figure 5.5, where the rings are represented by circles and the processors and

gateways by squares. A processor p on ring A is ordering messages from rings

A, B and C. If processor p has the data structures shown, p can deliver the

message with timestamp 7 from ring A, the message with timestamp 8 from

ring C, the message with timestamp 9 from ring B, and the messages with

timestamp 10 from rings B and C in agreed order.

After these messages have been delivered, the min timestamp and

max timestamp at processor p for ring C will be set to 11 until new messages

have been received from C. The lowest entry in cand msgs is the entry for ring

C with timestamp 11. The undelivered message with lowest timestamp is now

the message from ring B with timestamp 13, but no further messages can be

delivered until the next message from ring C is received. Otherwise, there may

be a message from C with a timestamp 12 that has not yet been received.

If the message received from ring A with timestamp 7 contains a request

for safe delivery, then processor p can deliver that message as safe since the

guarantee array column for A has all entries at least equal to 7 which indicates

94 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

guarantee array at p

Data structures at processor p

A B

A 29

C

A B C

p
 Max_timestamp = 29
 Min_timestamp = 7

17

7C
B 14 15

 9 10
10
11

A: Recv_msgs = 7,14,15,26,29

 Max_timestamp = 17
 Min_timestamp = 9

 Max_timestamp = 11
 Min_timestamp = 8

B: Recv_msgs = 9,10,13,15

C: Recv_msgs = 8,10

Figure 5.5: An example with rings A, B and C indicated by circles. The

processors and gateways are drawn as squares. The data structures at

processor p are also shown. A row of the guarantee array corresponds to

the guarantee vector received from a gateway on the ring.

that the message is safe on all of the rings in the current topology. The same

is true for the message from ring C with timestamp 8 and the message from

ring B with timestamp 9. The message from ring B with timestamp 10 cannot,

however, yet be delivered as safe since the guarantee vector from C reports

receipt of messages from ring B only up to timestamp 9.

5.2 The Topology Maintenance Algorithm

The message ordering algorithm described above depends on knowledge of the

network topology. If messages are originated on a ring of which a processor

p is unaware, processor p must be informed of the new ring and must wait

for such messages. Otherwise, p will prematurely deliver messages with higher

timestamps. Similarly, if a ring becomes inaccessible and processor p is not

informed, p must wait for a message from that ring and message ordering must

stop until p deletes the ring.

It is very important that a topology change has a consistent e�ect throughout

the set of processors that were previously able to, and can still, communicate

with each other. Even though the various processors learn of the topology

change at di�erent times, they must agree on the same logical time for the

5.2. THE TOPOLOGY MAINTENANCE ALGORITHM 95

change, and must agree on the sets of messages to be delivered before and

after the topology change. Only with care is it possible to maintain consistent

network-wide message delivery.

In addition, topology information must be exchanged between merged com-

ponents of the network to ensure that the processors and gateways proceed

with a consistent view of the network after the components have merged. This

exchange of topology information is handled by the gateways through an addi-

tional round of message passing.

The Data Structures

The data structures and message types given below facilitate the maintenance

of topology information.

Local Data Structures

Each processor and gateway maintains the local data structure:

� neighbors: The neighboring gateways on each of the rings to which this

processor is directly attached. Each neighbor has associated with it a

begin timestamp, which is the timestamp of the Con�guration Change

message that �rst identi�ed the gateway as a neighbor.

Each gateway also maintains the local data structure:

� topology: This gateway's view of the current topology of the network.

Topology is maintained as a graph with each ring represented as a node and

each gateway as an edge. Unreachable rings and gateways are not included

in topology. Each edge has a timestamp associated with it indicating when

it will be deleted from the graph based on the Con�guration Change

messages the gateway has received. This timestamp is initialized to �1

(in�nity) when an edge is �rst added to topology.

The topology identi�er is the lexicographically ordered list of ring identi-

�ers of the rings that comprise the topology. Since ring identi�ers are unique,

topology identi�ers are also unique.

96 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

Message Types

Con�guration Change Message

A Con�guration Change message is generated by the single-ring protocol to

signal a change in the membership of a ring. The Con�guration Change message

informs processors and gateways of the existence of a new ring, and is forwarded

by the gateway that generated it after the gateway has forwarded all of the

messages from the old ring. The Con�guration Change message is delivered

by both the single-ring and multiple-ring protocols as an agreed message, and

contains the following �elds:

� timestamp: The timestamp in the Commit token on its second rotation in

the single-ring membership algorithm, if the Con�guration Change mes-

sage initiates a regular con�guration, and the highest timestamp of a mes-

sage delivered in the preceding regular con�guration if the Con�guration

Change message initiates a transitional con�guration

� src ring id: The identi�er of the new ring (regular or transitional).

� type: Con�guration Change.

� conf id: The identi�er of the old ring (regular or transitional).

� memb list: A list of the processor identi�ers of the membership of the new

con�guration.

� gateways: A vector of booleans containing a position for each processor in

memb list. A vector component contains a one if the associated processor

is a gateway, and a zero otherwise. This information is gathered in the

Commit token of the single-ring membership algorithm.

� gateway ids: A list containing the gway id of each gateway on the new

ring. This information is gathered in the Commit token of the single-ring

membership algorithm.

� guar vector: The guarantee vector at the processor or gateway that gener-

ated the Con�guration Change message for the ring that experienced the

con�guration change.

5.2. THE TOPOLOGY MAINTENANCE ALGORITHM 97

The �rst four �elds constitute the identi�er of the Con�guration Change

message.

Network Topology Message

A Network Topology message is sent by a gateway on a directly attached ring

that experienced a con�guration change when a Con�guration Change message

is delivered at the gateway. The Network Topology message is not delivered to

the application or forwarded by the multiple-ring protocol; it informs the other

gateways and processors on the ring of the part of the network connected to the

ring by this gateway. The Network Topology message contains the following

�elds:

� timestamp: The timestamp of the associated Con�guration Change

message.

� src sender id: The processor identi�er on this ring of the gateway that

originated the message.

� gateway id: The identi�er of the gateway that originated the message.

� topology: The gateway's current view of the network topology outside the

ring that experienced the con�guration change.

Note that a gateway deterministically chooses one of two ring identi�ers as its

gateway id, and that its identi�er src sender id on the ring that experienced the

con�guration change is not necessarily the same as gateway id.

Topology Change Message

A Topology Change message is sent by a gateway to notify the other gateways

and processors in the network of a change in the topology due to a con�guration

change. The Topology Change message is forwarded and delivered in order along

with the regular messages. A Topology Change message is also created and

delivered locally by a processor (not a gateway) when it receives a Con�guration

Change message for a directly attached ring. The local view of the topology is

updated when the Topology Change message is delivered to the application. A

Topology Change message is sent with a request for agreed delivery and contains

the following �elds:

98 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

� timestamp: The timestamp of the corresponding Con�guration Change

message if the Topology Change message adds one or more rings. Other-

wise, it is the max timestamp of the ring to be deleted (which, in the case

that no message has been received from the ring, will be the timestamp

of the Topology Change message that introduced the ring).

� src ring id: The src ring id of the corresponding Con�guration Change

message, or the ring id of the ring to be deleted if the Topology Change

message contains a ring deletion only and a message has been received from

that ring, or the src ring id of the preceding Topology Change message if

the topology change consists of a ring deletion only and no message has

been received from the ring to be deleted.

� type: Topology Change, or Topology Change None if the topology change

consists of a ring deletion only and no message has been received from the

ring to be deleted.

� conf id: the conf id of the corresponding Con�guration Change message,

or the ring id of the ring to be deleted if the topology change consists

of a ring deletion only and no message was received from the ring to be

deleted.

� new rings: The identi�ers of added rings, if any.

� del rings: The identi�ers of deleted rings, if any.

� new gateways: A list of the gateways added to the topology, if any.

The identi�er of the Topology Change message consists of the �rst four �elds

above.

Messages are delivered by a processor executing the multiple-ring protocol in

the global total order de�ned by the lexicographical order on the set of ordered

4-tuples (timestamp, src ring id, type, conf id). The timestamps are arranged

in increasing order, the ring identi�ers (ring seq, rep id) are lexicographically

ordered, and the message types are ordered by the relation: Regular < Con�g-

uration Change < Topology Change < Topology Change None.

5.2. THE TOPOLOGY MAINTENANCE ALGORITHM 99

The Events of the Topology Maintenance Algorithm

There are �ve topology events, namely:

� Receipt of a Con�guration Change message. The Con�guration Change

message is created by the single-ring membership algorithm when a new

ring is formed. This message is not broadcast on the local ring but is

generated locally and is propagated by the multiple-ring protocol through

the rest of the network. On receipt of a Con�guration Change message,

a data structure for the new ring is added to the ring table. If a gateway

receives a Con�guration Change message that indicates that a ring has

become disconnected but no Con�guration Change message is pending for

the ring, the gateway sends a Topology Change message deleting the ring.

� Delivery of a Con�guration Change message. A gateway directly attached

to a ring that experienced a con�guration change exchanges topology in-

formation with the other gateways and processors on that ring by sending

a Network Topology message on that ring. The Network Topology mes-

sage describes the component of the network connected to the ring by the

gateway, based on its current topology and on Con�guration Change mes-

sages. Before sending a Network Topology message, a gateway waits until

the Con�guration Change message is the next message to be delivered, to

ensure that the local topology information is up-to-date.

� Receipt of a Network Topology message. When a gateway has received

Network Topology messages from all of the gateways on the directly at-

tached ring that experienced the con�guration change, it sends a Topol-

ogy Change message. The Topology Change message serves to inform the

other processors and gateways in the network of the change in the network

topology based on the gateway's local topology information.

� Receipt of a Topology Change message. When a processor or gateway

receives a Topology Change message, it accepts the message and adds it

to recv msgs for the src ring id, unless it has already placed a Topology

Change message with the same identi�er in recv msgs, in which case it

100 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

discards the Topology Change message. If a gateway accepts the Topology

Change message, it forwards it to the rest of the network.

� Delivery of a Topology Change message. The local view of the network

topology is updated when the Topology Change message is delivered. The

Topology Change messages are delivered in order along with the regular

messages and, thus, are delivered by the processors and gateways in a

consistent total order. Consequently, the gateways update their topology

information in the same total order at all sites.

Handling a Single Con�guration Change

First, we describe the steps taken by a processor to handle a single Con�g-

uration Change message without considering further topology changes during

execution of the multiple-ring membership algorithm. Receipt of a Con�gura-

tion Change message generated by the single-ring protocol signals a topology

change. Since the gateways maintain the current view of the network topology,

they are responsible for determination of the changes to the topology caused

by the con�guration change and dissemination of this information to the other

gateways and processors in the network. A gateway determines the new topol-

ogy by exchanging topology information with the other gateways on the ring

and combining the information to determine the new topology.

On receipt of a Con�guration Change message for a directly attached ring,

a gateway takes the following steps:

1. Copy the current old ring my guar vector into the Con�guration Change

message guar vector. Forward the Con�guration Change message.

2. Add a data structure for the new ring to the ring table. This data structure

provides a location to store messages originated on the new ring, including

this Con�guration Change message.

3. Add a row for the new ring to the guarantee array.

4. Bu�er messages received from new gateways on the ring until a Topology

Change message adding the new ring has been ordered.

5.2. THE TOPOLOGY MAINTENANCE ALGORITHM 101

5. Until the Con�guration Change message is the lowest entry in cand msgs,

deliver messages and, if recv msgs of the ring with the lowest entry in

cand msgs is empty, then execute step 6. If the lowest entry in cand msgs

corresponds to a safe message that has not been guaranteed by one of the

rings, then proceed to step 7. If the Con�guration Change message is the

lowest entry in cand msgs, go to step 8.

6. Determine if the ring with the lowest entry in cand msgs has become

disconnected. If so, create and broadcast a Topology Change message

indicating the deletion of the ring. Otherwise, wait for a message from

the ring. Return to step 5.

7. Determine if the rings, that have not guaranteed the message, have become

disconnected. If so, create and broadcast a Transitional Topology Change

message (de�ned later) indicating the topology changes required to deliver

the message. Otherwise, wait for a guarantee message from the ring.

Return to step 5.

8. Construct a Network Topology message and broadcast it on the new ring.

9. Gather Network Topology messages from the other gateways on the new

ring.

10. Combine Network Topology messages to determine changes to the current

topology and broadcast a Topology Change message indicating changes

to the local topology.

11. Update topology and ring table.

12. Deliver the Con�guration Change message and the associated Topology

Change message.

On receipt of a Con�guration Change message for a directly attached ring,

a processor that is not a gateway takes the following steps:

1. If there is no gateway that transitioned from the old ring to the new ring,

create Topology Change messages deleting the data structures for each

ring from the ring table, as of the highest entry in recv msgs for the ring.

102 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

2. Steps 2-4 above.

3. Deliver messages until the Con�guration Change message is the lowest

entry in cand msgs.

4. Combine Network Topology messages to determine the rings in the current

topology and create a Topology Change message indicating ring additions

and deletions.

5. Update ring table.

6. Deliver the Con�guration Change message and the associated Topology

Change message.

On receipt of a Con�guration Change message for a ring that is not directly

attached, a processor takes the following steps:

1. Add a data structure for the new ring to the ring table.

2. Add a row for the new ring to the guarantee array.

3. Continue delivering messages until the Con�guration Change message is

the lowest entry in cand msgs and the accompanying Topology Change

message has been received.

4. Deliver the Con�guration Change message and the Topology Change mes-

sage.

The processors and gateways directly attached to a ring are responsible

for determining topology change information associated with a con�guration

change. The gateways are also responsible for disseminating the topology change

information associated with the con�guration change. Pseudocode for handling

the messages associated with a con�guration change is given in Figures 5.6,

5.7, 5.8, 5.9 and 5.10. The actions taken by the processors and gateways when

a multiple-ring protocol topology event occurs are described below in greater

detail.

5.2. THE TOPOLOGY MAINTENANCE ALGORITHM 103

if new ring data structure already exists in ring table then

discard message

return

endif

if amgateway then

forward Con�guration Change message

endif

add new ring data structure

recv msgs := empty list

max timestamp := msg.timestamp

min timestamp := msg.timestamp

add message to new ring recv msgs list

add row for new ring to guarantee array

if msg.src ring id = directly connected ring ring id then

update neighbor gateways list for new ring

mark all new gateways as starting at Con�guration Change msg.timestamp

copy my guar vector for old ring into msg.guar vector

if amgateway then

for each gway id on new ring do

if gway id is in current topology then

mark gateway for deletion at msg.timestamp

endif

endfor

endif

endif

Update guarantee array row for old ring with msg.guar vector

Figure 5.6: Algorithm executed by a processor or a gateway on receipt

of a Con�guration Change message.

104 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

Receipt of a Con�guration Change Message

A Con�guration Change message serves to inform the processors and gateways

in the network of the new ring identi�er and to
ush messages from the old

ring. The Con�guration Change message precedes all messages forwarded from

the new ring. In essence, the Con�guration Change message places a marker in

the message order for the topology change.

If the Con�guration Change message is for a directly attached ring, then

the processor (or gateway) copies its my guar vector for the old ring id into

the guar vector �eld in the Con�guration Change message. On receipt of a

Con�guration Change message from any ring, a processor adds a data structure

for the new ring to the ring table with a min timestamp and max timestamp

equal to the timestamp of the Con�guration Change message. The processor

then places the Con�guration Change message in recv msgs for the new ring.

The processor also advances the max timestamp for the old ring id to the

timestamp of the Con�guration Change message. The processor adds a row to

the guarantee array for the new ring and sets all entries in the row equal to the

timestamp of the Con�guration Change message. It also updates the row of

the guarantee array associated with the old ring using guar vector and updates

neighbors according to the gway ids in the Con�guration Change message.

A gateway also updates the edges in its local topology. For each gateway

identi�er in gway ids, the gateway marks the current topology edge for that

gateway with the timestamp of the Con�guration Change message. The edge is

known to connect two di�erent rings as of the timestamp of the Con�guration

Change message. The timestamps on edges are used to determine the rings to

delete from the topology to allow delivery of the Con�guration Change message.

The Con�guration Change message is not used to add the new ring to, or

to delete the old ring from, the gateway topology. To maintain extended virtual

synchrony, the topology change needs to occur at the same logical time at all

gateways and processors that experience the change. To accomplish this, a

gateway delays updating the topology until the Con�guration Change message

is the lowest entry in cand msgs.

Since messages may be delayed by the forwarding operation, the

max timestamp for a ring may be lower than the timestamp of the Con�gu-

5.2. THE TOPOLOGY MAINTENANCE ALGORITHM 105

ration Change message. This will prevent the Con�guration Change message

from being delivered until the ring is deleted.

A gateway can send a Topology Change message to delete a ring when it has

received a Con�guration Change message that deletes the �nal connection to the

ring and all of the messages in recv msgs for that ring have been delivered. The

ring can be deleted because messages are forwarded in order, and all messages

that will be forwarded from the ring were forwarded ahead of the Con�guration

Change message that indicated the disconnection of the ring.

A processor (not a gateway), that receives a Con�guration Change message

for a directly attached ring indicating that there are no gateways that were on

both the old ring and new ring, creates and delivers locally Topology Change

messages to delete all rings in the ring table, except for the old ring, before

adding the new ring to the ring table.

A Topology Change message to delete a ring has the same src ring id as

that of the ring to be deleted, a timestamp equal to the max timestamp for that

ring, and contents indicating that the ring is to be deleted. The pseudocode

executed by a processor on receipt of a Con�guration Change message is given

in Figure 5.6.

Delivery of a Con�guration Change Message

When a Con�guration Change message is the next message to be delivered (the

lowest entry in cand msgs), each gateway on the ring that experienced the con-

�guration change sends a Network Topology message on that ring. A gateway

waits to send the Network Topology message until the Con�guration Change

message is the next message to be delivered to ensure that its local topology

has been updated to the timestamp of the Con�guration Change message. The

Network Topology messages are particularly necessary when there are gateways

or processors that are added to the ring. They serve to inform the gateways

and processors on the ring of the current topology connected to the ring by each

gateway.

Before building the Network Topology message, the gateway deletes the

gateway identi�ers listed in gway ids (including its own identi�er) from topology.

The gateways are deleted from topology because they are no longer connected

106 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

if msg.src ring id 6= directly connected ring ring id then

wait for Topology Change message

else

if amgateway then

for each gway id on new ring do

if gway id is in topology then

delete gateway from topology

endif

endfor

send Network Topology message

endif

wait for Network Topology messages from all gateways on new ring

combine Network Topology messages to determine new topology

create Topology Change message

if amgateway then

send Topology Change message

endif

endif

deliver Con�guration Change and Topology Change messages

Figure 5.7: Algorithm executed by a processor or a gateway when a

Con�guration Change message is the lowest entry in cand msgs.

to their old ring and, if they were left in topology, they would cause problems in

determining the currently connected topology to report in the Network Topol-

ogy message. The gateway determines the connected topology and sends this

information in a Network Topology message on the ring that experienced the

con�guration change.

A processor or gateway delays delivery of a Con�guration Change message

until it has received an associated Topology Change message with the same

timestamp and source ring, or Network Topology messages from all of the gate-

ways on the ring with the same timestampas the Con�guration Change message,

in which case it generates a Topology Change message. (Note that we are as-

suming that no further con�guration changes occur.) The pseudocode executed

by a processor to deliver a Con�guration Change message is given in Figure 5.7.

5.2. THE TOPOLOGY MAINTENANCE ALGORITHM 107

store as neighbor topology

if have Network Topology msgs from all gateways on new ring then

combine neighbor topologies to determine rings in network

add structures for new rings

add new rings to Topology Change message

list deleted rings in Topology Change message del rings

discard neighbor topologies

if amgateway then

list added gateways in Topology Change message

send Topology Change message

endif

add Topology Change message to recv msgs of new ring

endif

Figure 5.8: Algorithm executed on receipt of a Network Topology mes-

sage by a processor or a gateway.

Receipt of a Network Topology Message

The gateways and processors on a ring that experienced a con�guration change

are responsible for determining the topology changes associated with that con-

�guration change. To accomplish this, each gateway and processor gathers the

Network Topology messages from the gateways listed in gway ids of the Con�g-

uration Change message.

When a gateway has received Network Topology messages from all of the

gateways on the new ring, it merges the topology in the messages into its own

topology. For each ring or gateway added to topology, it records that ring or

gateway in the �elds new rings or new gateways of a Topology Change message.

The gateway also records any disconnected rings in the �eld del rings of the

Topology Change message. When all ring and gateway additions and deletions

are complete, the gateway sends a Topology Change message indicating the

changes with timestamp equal to the timestamp of the Con�guration Change

message (and, therefore, also of the Network Topology messages) and src ring id

equal to the new ring. The Topology Change message is sent on all directly

attached rings except the ring that experienced the con�guration change.

When a processor has received Network Topology messages from all of the

gateways on the new ring, the processor merges the topology in the messages

108 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

if msg.timestamp < min timestamp for msg source ring or

msg is already in recv msgs for ring source then

discard msg

return

endif

if amgateway then

forward msg

for each gateway identi�er in new gateways do

if gateway is in topology then timestamp := msg.timestamp

endfor

endif

add to msg source ring recv msgs list

add new rings data structures to ring table with

max timestamp := msg.timestamp and

min timestamp := msg.timestamp

add a row to guarantee for each ring in new rings

source ring max timestamp := msg.timestamp

Figure 5.9: Algorithm executed by a processor or a gateway on receipt

of a Topology Change message.

to determine the rings in the network, including the new ring initiated by

the Con�guration Change message. The processor then generates a Topol-

ogy Change message containing any added rings in new rings and any deleted

rings in del rings. The Topology Change message once generated is added to

recv msgs for the new ring and is forwarded by the gateways. The pseudocode

executed by a processor on receipt of a Network Topology message is given in

Figure 5.8.

Receipt of a Topology Change Message

When a processor receives a Topology Change message, it accepts the message

and adds it to recv msgs for the src ring id, unless it has already placed a

Topology Change message with the same identi�er in recv msgs, in which case

it discards the Topology Change message. If a gateway accepts the Topology

Change message, it forwards it to the rest of the network.

5.2. THE TOPOLOGY MAINTENANCE ALGORITHM 109

for each ring in del rings do

delete data structure for ring from ring table

if amgateway then

delete ring and connected gateways from topology

endif

delete column and row for ring from guarantee array

delete entry for ring from my guar vector

endfor

for each ring in new rings do

add row for ring to guarantee array

endfor

if amgateway then

for each ring in new rings do

add ring to topology

endfor

for each gateway in new gateways list do

delete gateway from topology

add gateway as edge in topology

endfor

endif

deliver Topology Change message

Figure 5.10: Algorithm executed by a processor or a gateway on delivery

of a Topology Change message.

If a processor accepts the Topology Change message, it adds data structures

for the previously unknown rings in the new rings list of the Topology Change

message to ring table. Each ring is added to ring table with an empty recv msgs

list and a min timestamp and max timestamp equal to the timestamp of the

Topology Change message.

A gateway also marks the edges corresponding to new gateways in topology

with the timestamp of the Topology Change message indicating that those edges

will be deleted from the topology at that timestamp. These new gateways will

connect a di�erent pair of rings after the Topology Change message is ordered.

The pseudocode executed by a processor or gateway on receipt of a Topology

Change message is given in Figure 5.9.

110 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

Delivery of a Topology Change Message

When a Topology Change message is the lowest entry in cand msgs at a gateway,

the gateway deletes the new gateways from topology since they will now connect

a di�erent pair of rings. The gateway then adds the rings in new rings and the

gateways in new gateways to topology. The gateway also deletes the rings in

del rings from topology. All gateways connected to a deleted ring are deleted

with that ring.

The processor or gateway also deletes the components corresponding to the

rings in del rings from the guarantee array, my guar vectors and ring table. A

row for each ring in new rings is added to the guarantee array; the timestamp

for each entry in the row is initialized to the timestamp of the Topology Change

message. When a processor has completed processing a Topology Change mes-

sage, it delivers the message. The pseudocode executed by a processor to deliver

a Topology Change message is given in Figure 5.10.

Message Ordering During a Topology Change

When a Con�guration Change message for a directly connected ring is pending

(received but not delivered), a processor discards a message (does not place

it into recv msgs, if the message has a timestamp less than the timestamp of

the Con�guration Change message and if it was forwarded onto the ring by a

new gateway (a gateway that was not a member of the old ring). All messages

received from a new gateway with timestamps greater than the timestamp of

the Con�guration Change message are bu�ered by the processors and gateways

on the ring until after the Con�guration Change message is delivered. These

bu�ered messages may be from previously known rings and may follow a tempo-

rary interruption in the forwarding of messages. Once the Con�guration Change

message and its associated Topology Change message have been delivered, the

bu�ered messages are added to recv msgs and are forwarded by the gateways in

order.

To deliver a message in safe order, a processor waits until it knows that all

processors and gateways in the current topology have received the message. If

a topology change has partitioned the network and a message that requested

5.2. THE TOPOLOGY MAINTENANCE ALGORITHM 111

safe delivery is not known to have been received by all of the processors on a

disconnected ring (because a Guarantee Vector message that guaranteed the

message as safe had not been received), that ring must be deleted from the

topology before the message can be delivered in safe order.

Since there is a delay in forwarding messages through the network, some

messages forwarded onto a ring after a con�guration change will have a lower

timestamp than the timestamp of the Con�guration Change message that dis-

connected the forwarding path. When the forwarded message is the low entry

in cand msgs, the topology still contains the ring disconnected by the con�g-

uration change. If a message requesting safe delivery was not guaranteed as

safe on the old ring, each processor and gateway on the old ring proceeds to

a new ring containing only itself to deliver the message. To accomplish this,

the multiple-ring protocol generates additional con�guration changes using two

additional message types.

The Data Structures

The data structures and message types described below facilitate the removal

of rings from the current topology to allow ordering of safe messages.

Local Data Structures

� pending SCC bu�er: List of Transitional Con�guration Change messages

that have been received but not processed.

Message Types

Transitional Con�guration Change Message

A Transitional Con�guration Change message is created by a gateway when a

message requesting safe delivery has not been guaranteed as safe by a directly

attached ring that experienced a con�guration change. The Transitional Con-

�guration Change message informs the other processors and gateways in the

network that the processor or gateway is proceeding to a ring containing only

itself. The Transitional Con�guration Change message is not delivered to the

application and contains the following �elds:

112 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

� timestamp: The timestamp of the message that requested safe delivery.

� src ring id: The identi�er of the ring that did not guarantee the message

as safe.

� conf id: The identi�er of the old ring in the pending Con�guration Change

message for the new ring.

� temp ring id: The identi�er of the new ring. The new ring identi�er

consists of the identi�er of this processor or gateway (as a representative)

and a ring sequence number one greater than the sequence number of the

conf id.

� next ring id: The src ring id from the pending Con�guration Change mes-

sage for the ring.

� gway id: The identi�er of the gateway that originated the message.

The Transitional Con�guration Change message does not contain a

memb list �eld since the membership of the new ring is the processor or gateway

itself.

Transitional Topology Change Message

A Transitional Topology Change message is generated by each processor or

gateway on the ring that did not guarantee the message as safe. The Tran-

sitional Topology Change message is forwarded by the gateways to notify the

other processors and gateways in the network of the change in the topology

and to allow delivery of a message requesting safe delivery. The Transitional

Topology Change message is forwarded and delivered in order along with the

other messages in the network. The local view of the topology is updated when

the Transitional Topology Change message is delivered to the application. The

Transitional Topology Change message is sent with a request for agreed delivery

and contains the following �elds:

� timestamp: The timestamp of the message that requested safe delivery.

� src ring id: The src ring id of the message that requested safe delivery.

5.2. THE TOPOLOGY MAINTENANCE ALGORITHM 113

� type: Transitional Topology Change.

� conf id: The lowest ring identi�er in new rings determined by lexicograph-

ical order.

� new rings: The identi�ers of the added rings, i.e. the singleton rings con-

taining the gateways.

� del rings: The identi�ers of the deleted rings.

� new gateways: A list of the gateways added to the topology.

The identi�er of the Transitional Topology Change message consists of the

�rst four �elds above.

The Transitional Topology Change messages are delivered by a processor

or gateway executing the multiple-ring protocol in the global total order. The

Transitional Topology Change message type is ordered in the message delivery

order as follows: Transitional Topology Change < Regular.

The Algorithm

When a gateway determines that the low entry message in cand msgs cannot

be delivered as safe on a directly attached ring in the current topology, it gen-

erates a Transitional Con�guration Change message. This message cannot be

guaranteed as safe on the ring because it has been received from the single-ring

protocol after a Con�guration Change message for the ring, and the Con�g-

uration Change message had a timestamp greater than the timestamp of the

message that requested safe delivery. This situation can only occur when mes-

sages are forwarded onto the ring, and is caused by a delay in the forwarding

of messages. The Transitional Con�guration Change message generated by a

gateway is forwarded throughout the connected component of the network. A

Transitional Con�guration Change message generated by a processor (not a

gateway) is only delivered locally. The pseudocode executed by a processor or

gateway to generate a Transitional Con�guration Change message is given in

Figure 5.11.

114 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

if low message in cand msgs requested safe delivery and

a directly attached ring did not guarantee message and

directly attached ring has pending Con�guration Change message then

generate Transitional Con�guration Change message to reduce

directly attached ring to singleton

send Transitional Con�guration Change message on all other

directly attached rings

add Transitional Con�guration Change message to pending SCC bu�er

endif

Figure 5.11: Algorithm executed by a processor or a gateway when the

lowmessage in cand msgs requested safe delivery and cannot be guaranteed

as safe by a locally attached ring.

On receipt of a Transitional Con�guration Change message, a processor or

gateway adds an entry to its ring table for temp ring id with min timestamp and

max timestamp equal to the timestamp of the Con�guration Change message

pending for the next ring id.

On receipt of a Transitional Con�guration Change message, a gateway marks

the edge corresponding to gway id with the timestamp of the Transitional Con-

�guration Change message. If the message corresponding to the low entry in

cand msgs contains a request for safe delivery and the message has been guaran-

teed as safe in the topology that remains accessible, then the gateway generates

a Transitional Topology Change message listing in new rings the temp ring id

from each of the Transitional Con�guration Change messages received. The

identi�ers of all of the rings that have become disconnected due to the con�g-

uration changes listed in the Transitional Con�guration Change messages are

listed in del rings. The identi�ers of the gateways that sent the Transitional

Con�guration Change messages are listed in new gateways. These gateways are

each directly connected to a new singleton ring in new rings. The pseudocode

executed by a processor or gateway on receipt of a Transitional Con�guration

Change message is given in Figure 5.12.

A processor (not a gateway) on the ring that incurred the con�guration

change can generate the Transitional Topology Change message directly since

it proceeds to a singleton ring containing only itself. It places the identi�er of its

new singleton ring in new rings and the identi�ers of all rings in its ring table

5.2. THE TOPOLOGY MAINTENANCE ALGORITHM 115

add Transitional Con�guration Change message to pending SCC bu�er

add temp ring id to ring table

update conf id of Con�guration Change pending for next ring id

if amgateway then

mark gateway in topology with message.timestamp

if low message in cand msgs is safe in

remaining connected network then

construct Transitional Topology Change message

for each message in pending SCC bu�er do

add temp ring id to new rings

add conf id to del rings

add gway id to new gateways

discard Transitional Con�guration Change message

endfor

send Transitional Topology Change message

add Transitional Topology Change message to recv msgs of src ring id

endif

endif

Figure 5.12: Algorithm executed by a processor or a gateway on receipt

of a Transitional Con�guration Change message.

(except the new ring id from the pending Con�guration Change message) in

del rings. It then delivers the Transitional Topology Change message locally

and does not broadcast it; this su�ces because there are no other processors or

gateways on the ring with identi�er temp ring id.

When the Transitional Topology Change message is the low entry in

cand msgs, a gateway deletes the rings in del rings and adds the rings in

new rings to the topology. It also adds the gateways in new gateways. A proces-

sor or gateway delivers a Transitional Topology Change message to inform the

application of the changes to the topology. If there are messages in recv packets

from the deleted rings, these messages can still be delivered if the requirements

for agreed or safe delivery in the reduced topology are met. A processor on a

detached ring can also deliver the message as agreed or safe on that ring. The

pseudocode executed by a processor or gateway when it delivers a Transitional

Topology Change message is given in Figure 5.13.

116 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

for each ring in del rings do

if recv msgs for ring is empty then

delete ring from ring table

else

mark ring for deletion

endif

if amgateway then

delete ring from topology

endif

endfor

add each ring in new rings to ring table

if amgateway then

add each ring in new rings to topology

add each gateway in new gateways to topology

endif

Figure 5.13: Algorithm executed by a processor or a gateway when the

low message in cand msgs is a Transitional Topology Change message.

Example

Returning to the example in Figure 5.5, let's examine what happens if ring B

partitions into B

0

and B

00

as shown in Figure 5.14. The Con�guration Change

message delivered by the processors on ring B

0

has timestamp 25. The data

structures at gateway q, after the Con�guration Change message is received,

are also shown in Figure 5.14.

When gateway q receives the Con�guration Change message, it adds the mes-

sage to recv msgs for ring B

0

, increases the max timestamp for B to 25, copies

my guar vector into the Con�guration Change message and forwards it. Gate-

way q also sets its own timestamp in topology to 25. The Con�guration Change

message cannot be delivered yet, because messages beyond timestamp 11 have

not been received from C. Since the lowest entry in cand msgs corresponds

to ring C and recv msgs for C is empty, gateway q investigates the connected

component of topology. In determining the connected component, q considers

all gateways with timestamps not equal to �1 to be deleted. Since there are

no other connections to ring B, q determines that C has become disconnected

and sends a Topology Change message deleting C at timestamp 11. When

this Topology Change message is ordered, C is deleted by the processors on

5.2. THE TOPOLOGY MAINTENANCE ALGORITHM 117

A B

A 29

C

C
25

10
B

25
15
7

11
11

9
B

guarantee array at q

 Min_timestamp = 13
 Max_timestamp = 25

 Max_timestamp = 29
 Min_timestamp = 14

Data structures at gateway q

A B" Cq B

 Max_timestamp = 11
 Min_timestamp = 11

 Min_timestamp = 25
 Max_timestamp = 25

A: Recv_msgs = 14,15,26,29

B: Recv_msgs = 13,15

C: Recv_msgs = (empty)

B’: Recv_msgs = 25

Figure 5.14: An example with ring B partitioned into B

0

and B

00

. The

rings are indicated by circles and the processors are drawn as squares.

The data structures at gateway q are also shown.

rings A and B

0

. This allows those processors and q to order messages beyond

timestamp 11, in particular the message from ring B with timestamp 13, the

message from ring A with timestamp 14, and the messages from rings A and B

with timestamp 15.

When the Con�guration Change message is the lowest entry in cand msgs,

gateway q sends a Network Topology message on ring B

0

with a timestamp 25

and a topology consisting of ring A. Since q is the only gateway on the new

ring, it does not wait for additional Network Topology messages and instead

proceeds immediately to construct the Topology Change message. Gateway q

sends a Topology Change message on A indicating the addition of ring B

0

and

the deletion of ring B. When they receive the Con�guration Change message,

the processors on A add a data structure for ring B

0

to their ring table. They

delete the data structure for ring B from their ring table when they deliver the

Topology Change message.

When a processor on ring B

0

receives the Network Topology message from

q, it has all of the Network Topology messages and determines that the current

topology consists of A and the new ring B

0

. Each processor on the new ring B

0

creates a Topology Change message indicating the addition of ring B

0

and the

deletion of ring B with timestamp 25 and src ring id that of B

0

. The processor

then adds the Topology Change message to recv msgs for ring B

0

. The processor

deletes ring B when it delivers the Topology Change message.

118 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

Handling Multiple Concurrent Con�guration Changes

The multiple-ring membership algorithm does not have any control over the

order or timing of con�guration changes, thus Topology Change messages and

further Con�guration Change messages may be received before the current Con-

�guration Change message has been delivered. If a processor is waiting for a

Network Topology message from a gateway and instead receives a Con�gura-

tion Change message indicating that the gateway is no longer connected, the

protocol must be able to proceed without that Network Topology message. We

now describe the handling of Con�guration Change messages that arrive before

a pending Con�guration Change message has been delivered. The receipt and

delivery of Topology Change messages and the delivery of Con�guration Change

messages are una�ected by multiple concurrent topology changes.

Receipt of a Con�guration Change Message

On receipt of a Con�guration Change message, a processor takes the actions de-

scribed in handling a single Con�guration Change message. If the Con�guration

Change message is for a directly attached ring that already has a Con�gura-

tion Change message pending, a processor also takes the actions as if a Network

Topology message had just been received. The processor may now have received

all the needed Network Topology messages for a pending Con�guration Change

message since some gateways may not be on the new ring of the most recent

Con�guration Change message.

Receipt of a Network Topology Message

On receipt of a Network Topology message, a processor checks whether it has

all of the Network Topology messages for the pending Con�guration Change

message with the same timestamp. It must have received Network Topology

messages from all neighboring gateways with begin timestamp less than or equal

to the timestamp of the associated Con�guration Change message; subsequent

Con�guration Change messages may have reduced this set of neighbors. If it has

received these messages, the processor takes the actions described for receipt of

a Network Topology message when handling a single topology change.

5.2. THE TOPOLOGY MAINTENANCE ALGORITHM 119

C D E
b c e

d

A’B’
a

B"

B C D E

F

b c e

d

A

a

C D E
b c e

d

A’B’
a

B

B C D E
b c e

a d

A’

a: Before timestamp 120 c: After timestamp 125

b: After timestamp 120 d: After timestamp 130

Figure 5.15: An example with rings A, B, C, D, E and F indicated by

circles. The gateways are drawn as lines. At timestamp 120, rings A

and F merge and become A

0

. At timestamp 125, ring B

0

is formed by a

partition of B, and at timestamp 130 the rest of the processors from B

form B

00

.

Message Ordering

If there are multiple Con�guration Change messages pending for a single ring,

a processor bu�ers messages forwarded by all new gateways. The messages are

removed from the bu�er when the associated Con�guration Change message is

delivered.

A processor also uses all of the pending Con�guration Change messages to

determine if the ring with the lowest entry in cand msgs has become discon-

nected. If the lowest entry in cand msgs requested safe delivery, the processor

uses all pending Con�guration Change messages to determine if a ring that did

not guarantee the message has become disconnected. Otherwise, the ordering

of messages proceeds as in the case of a single topology change.

Example

Consider the network in Figure 5.15a. The topology of the network is progress-

ing through the topology changes shown. Initially, there are six rings. These

rings progress through two topology changes.

120 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

The �rst topology change is the merging of rings A and F into the new

ring A

0

(Figure 5.15b). The Con�guration Change message received by the

processors and gateways on A

0

reports the change and has timestamp 120. The

second topology change is the partitioning of ring B into B

0

and B

00

(Figures

5.15c and 5.15d). Two Con�guration Change messages are delivered: one is

received by the processors and gateways on B

0

and has timestamp 125, and the

other is received by the processors and gateways on B

00

and has timestamp 130.

The gateways that receive the Con�guration Change messages forward these

messages to inform the other processors in the network of the con�guration

change.

The guarantee vectors at gateway a, after the Con�guration Change mes-

sages for A

0

and B

0

have been received, are shown in Figure 5.16. The guarantee

vectors for A

0

and B

0

are maintained by a starting immediately after the Con-

�guration Change messages are received. Since neither of the Con�guration

Change messages has been delivered, they have not yet a�ected the topology

information. The messages forwarded onto A

0

by gateway d with timestamps

greater than 120 are bu�ered at a and are not forwarded or added to recv msgs

until the ordering timestamp reaches 120 and the Con�guration Change mes-

sage has been delivered. Messages forwarded by d onto A

0

with timestamps less

than 120 are discarded by a.

At gateway a, recv msgs for E is empty and max timestamp for E is 85.

Prior to the topology changes, gateway b forwarded E's messages to gateway

a. After the �rst topology change, gateway d forwards messages from E to

gateway a, but gateway a bu�ers these messages until after it has delivered the

Con�guration Change and Topology Change messages for A

0

. When gateway a

receives the Con�guration Change message for B

0

, it knows that gateway b is

no longer forwarding messages from E to gateway a.

Gateway a will never receive the messages from E between timestamps 85

and 120. Gateway a must delete E from its topology at timestamp 85 to avoid

inconsistencies. To inform the rest of the network of the deletion, a transmits

a Topology Change message with timestamp 85, src ring id equal to E, and

contents stating that E should be deleted. This Topology Change message will

be ordered by the processors on A

0

and B

0

, but will be discarded by d because

5.3. PERFORMANCE 121

A B C D E F

A

B

A’

B’

120 110 100 95 85 90

120 125 124 122 85 90

125 124 122

125 125 125 125 125 125

120 120 120

Figure 5.16: Some of the guarantee vectors at gateway a for rings A and B

after receiving the Topology Change messages informing of the formation

of rings A

0

and B

0

(Figure 10c).

it has a timestamp less than 120. Gateway d maintains a connection with E

and does not need to delete it. When the ordering timestamp at a reaches 90,

gateway a sends a Topology Change message deleting F .

Rings B, C and D are not deleted by gateway a at this time because its

recv msgs list for each of these rings has messages up through timestamp 120.

The Con�guration Change message at timestamp 120 adds a connection via

gateway d through A

0

, and messages from B, C and D are received at gateway

a. The deletions of E and F at a are essential to allow the ordering of messages

to progress at gateway a.

Gateway a waits until its ordering timestamp has reached 120 and then

sends a Network Topology message on A

0

indicating that its current topology

outside of A

0

is B, C, and D. When a receives the Network Topology message

with timestamp 120 from d, a is informed of the new connection to B, C, D

and E and adds E back into the topology of the network. Gateway a also

sends a Topology Change message indicating that rings A

0

and E were added

at timestamp 120. The message also indicates the deletion of A at timestamp

120. Upon receipt of the Topology Change message, the processors have all of

the information they need to order messages beyond timestamp 120.

5.3 Performance

Flow Control

The single-ring protocol provides e�ective
ow control within a single broad-

cast domain. It ensures that all processors and gateways on the ring have an

122 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

opportunity to broadcast messages, and limits the maximum rate of transmis-

sion by any individual processor on the ring. However, a mechanism to create

backpressure on the applications generating messages is required to avoid unlim-

ited output bu�ering requirements within the single-ring protocol for messages

waiting to be broadcast.

Messages are also queued in an input bu�er for delivery to the application.

This bu�er can grow to unlimited size if the application is not keeping up with

the message generation rate. Consequently, a backpressure mechanism is also

required at the application interface.

Although the Totem protocol is de�ned as separate layers, several of the

layers are normally compiled into a single process, but there may be multiple

processes implementing Totem within a processor. For a processor to bu�er

messages between layers of the protocol within a process is pointless. Instead,

we have implemented a process oriented
ow-control mechanism. Each process

maintains a variable to indicate if any of the interface queues has reached a

prede�ned over
ow point. The setting of this variable activates a backpressure

mechanism which reduces the incoming tra�c until the queue has reached a

more reasonable size. This creates a network-wide
ow-control mechanism,

which is described below.

The Data Structures

Regular Token

The following �elds are added to the regular token:

� block: A boolean indicating whether the network is congested, as explained

below.

� block seq: A sequence number indicating the current block sequence num-

ber for this ring.

Local Variables

Each process maintains the following variables:

� site block: An integer indicating the number of message queues in this

process that are full, as de�ned by max threshold below.

5.3. PERFORMANCE 123

� site block seq: The highest block sequence number known to this proces-

sor.

For each queue of messages waiting to be sent the process maintains the

following variables:

� max threshold: Number of messages allowed in the queue before this queue

is in danger of over
owing.

� min threshold: Number of messages in the queue for the queue so that it

no longer in danger of over
owing.

� set site block: An enumerated type with one of three values that indicate

whether this queue has reached the max threshold, or has been asked by

the receiving site to block, or neither.

For each single-ring protocol connection, the process maintains the following

variable:

� blocking token: Boolean indicating whether this site set the block �eld of

the token.

The variables site block and site seq are initialized to zero, the max threshold

and min threshold values for each queue are established using heuristics based

on several factors including bu�er and latency requirements. The set site block

for each queue and blocking token for each process executing the single-ring

protocol are initialized to false.

The Algorithm

A process maintains a queue at each output interface, and adds a message to the

queue when the message destination is not ready to receive it. For each queue,

the process counts the number of messages in the queue. When the count reaches

max threshold, the process increments site block and site seq. The process also

sets set site block. The pseudocode executed by a processor on over
ow of a

queue is given in Figure 5.17. When a queue that had previously reached

max threshold reaches min threshold, the block can be removed; site block is

124 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

if queue size >= max threshold and set site block = FALSE then

site block++

site seq++

endif

set site block := SND BLOCK

Figure 5.17: Algorithm executed by a processor or a gateway when the

number of messages in a send queue reaches the maximum threshold.

If queue size <= min threshold and set site block = SND BLOCK then

site block��

set site block := FALSE

endif

Figure 5.18: Algorithm executed by a processor or a gateway when the

number of messages in a send queue reaches the minimum threshold after

having reached the maximum threshold.

then decremented and set site block is unset. The pseudocode executed by a

processor to unset site block is given in Figure 5.18.

A process does not accept messages from users unless site block equals zero.

At the single-ring protocol interface, there is no bene�t to the process refusing

to accept messages. Instead, the process uses the token to propagate the site

block and to reduce the tra�c generated by other processors in the network. A

single-bit block �eld is added to the token to propagate a processor's site block

to the other processors on the ring. The block seq �eld is added to the token to

allow processors to recognize an out-of-date block.

When the token arrives and the site is blocked but the token is not blocked,

if the token block seq is less than site seq then the processor sets the block �eld

of the token and sets blocking token to true to remember that this site blocked

the token. If the token is blocked but the processor is not blocked and this

processor set the token block �eld, then the processor unsets the token block

�eld. Otherwise, if the token block seq is greater than site seq then some other

processor wants the processors on the ring to block so this processor increments

site block and sets set site block to remember that it set the site block.

5.3. PERFORMANCE 125

if token.block = TRUE then

if site block = 0 then

if blocking token = TRUE then

token.block := FALSE

blocking token := FALSE

else if token.block seq > site seq then

site block++

set site block := RCV BLOCK

endif

endif

else

if set site block = RCV BLOCK then

site block��

set site block := FALSE

endif

if site seq > token.block seq and site block > 0

blocking token := TRUE

token.block := TRUE

endif

if site seq = token.block seq and site block > 0 and

set site block = SND BLOCK then

site seq++

token.block := TRUE

blocking token := TRUE

endif

endif

site seq := MAX(site seq, token.block seq)

token.block seq := site seq

Figure 5.19: Algorithm executed by a process on receipt of the token.

Before forwarding the token, the processor sets site seq to the maximum of

site seq and the token block seq �eld. The processor then sets the token block seq

�eld to the value in site seq.

A process is blocked if its site block variable is greater than zero. A blocked

process continues to send messages as allowed by the single-ring protocol. If the

process is part of a gateway, it also continues to forward messages.

A process uses multiple values for set site block to remember what caused

site block to be set. The process sets set site block to RCV BLOCK when it

increments site block because it received a token with the block �eld set. If the

126 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

queue reaches max threshold, the process sets set site block to SND BLOCK,

because even if the site block was originally set by receipt of a blocked token,

this site's send queue is now also blocking which overrides the token block. If

the token is received with the block �eld unset and the site's set site block set

to RCV BLOCK, this site had previously received a token with the block �eld

set which is now unset so the process decrements site block. The pseudocode

executed by a processor to handle
ow control on receipt of the token is given

in Figure 5.19.

The token and site blocking mechanisms provide a means of propagating

information about a congested node throughout the network. The time to

propagate the block operation to a particular processor on the ring is on av-

erage one token rotation, one half rotation waiting for the token and one half

rotation before the token reaches the other processor. The use of the site block

variable provides immediate forwarding of the block operation through a gate-

way. Thus, a block or unblock operation will propagate through the network

quickly. Although more sophisticated mechanisms of gradually decreasing or

increasing network tra�c to avoid congestion could be used, they would require

additional space in the token and additional processing at each site.

Simulation

The single-ring protocol simulator has been extended to allow study and debug-

ging of the Totemmultiple-ring protocol [19]. The single-ring protocol simulator

is designed to simulate a ring with an arbitrary number of processors using one

physical host. To simulate multiple rings, this simulator is distributed across

multiple physical hosts with each host simulating a ring. The connections be-

tween rings are provided by the gateways. Each gateway is split into two parts

connected by a TCP socket. The single-ring protocol executes on the physical

host that simulates the ring. Most of the gateway code executes on one of the

two physical hosts and the other side executes a simple �ltering process; the

two sides communicate over a TCP socket. The distributed simulator was de-

veloped for the multiple-ring protocol to allow study of larger systems than are

physically available.

5.3. PERFORMANCE 127

Implementation

The Totem multiple-ring protocol has been implemented using the C program-

ming language on a network of Sun 4/IPC workstations connected by an Eth-

ernet. To allow study of the multiple-ring protocol, the single-ring protocol was

modi�ed to allow speci�cation of a network number that determines the socket

to be used for broadcasts. This allows multiple rings to be executed on a single

Ethernet. However, the design of the single-ring protocol precludes running

more than a few rings on a single Ethernet since the protocol is built on an

assumption that the message loss rate is relatively low.

Measurements of the multiple-ring protocol were made for two rings, operat-

ing over separate Ethernets, connected by a gateway with two processors other

than the gateway per ring. A Sun Sparcstation 20 was used as the gateway and

four Sun 4/IPCs were used as the processors.

The single-ring protocol with three processors (two IPCs and one Sparcsta-

tion 20) on a ring sending 1024 byte messages achieves a throughput of 768

messages ordered per second. If the multiple-ring protocol is run as well, the

throughput drops to 636 messages ordered per second. This translates to an

additional 0.27 milliseconds per message for the multiple-ring protocol. Two

rings running with the gateway forwarding messages between them acheived a

throughput of 631 messages ordered per second.

The above tests had the single-ring
ow control parameters set to allow

the gateway to send twice as many messages per token rotation as each of

the individual processors. This ensured that the multiple-ring protocol
ow-

control was seldom invoked. To study the e�ectiveness of the
ow control of

the multiple-ring protocol, we varied the proportion of messages sent by the

processors and the gateway on each ring. Setting the proportion of messages sent

by the gateway to 1.5 times that for each individual processor (
ow-control was

invoked regularly) resulted in a throughput degradation of less than 2 messages

per second.

128 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

7

15

8

13

14

12

11

10

9
6

3

5

4

2

1
0

Figure 5.20: A robust sixteen node graph. Even nodes are connected at

hops of one and six, and odd nodes are connected at hops of one and

four.

5.4 Network Con�guration

Reliable ordered delivery of messages can only be achieved if the processors are

able to communicate with each other. Many wide-area networks are deliberately

designed to provide alternative routes between nodes so that failure of a single

link does not preclude further operation. Typical networks provide a small

number of alternative routes, but in many applications the additional delay

involved in using an alternative route may be unacceptable. Thus, the network

design must be carefully considered if reliable ordered delivery protocols are to

be e�ective.

If we represent the network as a graph where each local-area network is a

node and each gateway is an edge, then network connectivity can be analyzed

as a graph partitioning problem. Alternative path lengths can be determined

from the minimum depth spanning trees of a graph after failures occur. The

height of the minumum depth spanning tree rooted at node n is the length of

the minumum route to the most distant node from n in the network.

We have built a simulator to evaluate network designs and have investigated

typical network graphs that contain 50 nodes and are at least bi-connected,

each node having maximum degree 4 (i.e. 50 local-area networks with at most

4 gateways on each local-area network). Two types of network designs were

investigated: random and robust. The random graphs were constructed by

adding random edges to the graph. An edge was not added if it made the

degree of a node greater than four or if it created a self-loop or parallel edge.

5.4. NETWORK CONFIGURATION 129

Number of Edges Removed

M
ea

n
 D

ep
th

 o
f

S
p

an
n

in
g

 T
re

e

0 5 10 15 20 25 30 35 40 45
0

5

10

15

Random Graph

Robust Graph

Figure 5.21: The e�ect on the spanning tree height of deletion of edges

in a graph. The graphs contain 50 nodes with a maximum vertex degree

of 4 and, thus, contain a maximum of 100 edges. A random biconnected

graph and a graph designed for robustness are depicted. Note than the

heights of the spanning tree increase quite slowly as edges are deleted.

The robust graphs were constructed to be resilient to edge deletion. A robust

graph was speci�ed by numbering the nodes sequentially and then specifying

the number of hops between connected nodes in the pattern. A sample sixteen

node robust graph is shown in Figure 5.20. The even numbered nodes have

edges with one hop and six hops. The odd numbered nodes have edges of one

hop and four hops. These graphs are highly symmetric and are similar to the

circulant graphs studied in [14].

The e�ects of failure in the random and robust graphs were studied by

randomly choosing edges to delete from the graph. The spanning tree heights

and connectivity were measured as a function of edge deletion.

In Figure 5.21 we see that the heights of the spanning trees increase very

slowly as more links fail, up to quite large numbers of failed links. Consequently,

networks based on
ooding should continue to delivermessages promptly even in

the presence of failed links. The increase in the average depths of the spanning

trees as failures occur in a graph indicates the added delay that messages will

experience in reaching their destinations. Both random and robust graphs were

investigated as edges (gateways) were deleted from the graphs. Simulations

show that for both random and robust graphs, if the graph remains connected,

the average depth of the spanning trees increases very slowly with edge deletion.

130 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

Number of Edges Removed

P
ro

b
ab

ili
ty

 t
h

at
 G

ra
p

h
 i

s
C

o
n

n
ec

te
d

0 5 10 15 20 25 30 35 40 45
0.0

0.2

0.4

0.6

0.8

1.0

Random Graph

Robust Graph

Figure 5.22: The e�ect on the proportion of graphs that remain connected

as edges are deleted, one edge at a time. Note that edge deletion is much

more signi�cant for disconnection than for spanning tree height.

Although the Totem protocol is designed to continue despite network par-

titions, reliable delivery of messages can only be provided between processors

that are in the same component of the partition. Thus, it is desirable to design

the network to increase the probability that the network will remain connected

despite failures.

Figure 5.21 includes data only for networks that remain connected. Figure

5.22 shows the proportion of networks that remain connected as edges are re-

moved one at a time. Note that the networks start to loose connectivity with

relatively few failed links. Clearly, failure to deliver a message at all is a more

serious problem than late delivery due to a circuitous route. Note also that

random networks are more vulnerable to disconnection due to link failure than

are specially designed networks.

The data indicate that, as gateways fail, partitioning of the network is of

more concern than the increased length of the routes in the network. We have

found that the network layout does a�ect the mean number of gateways that can

fail before the network partitions but that most \reasonable" network designs

are resistant to partitioning if the graph of the network is at least bi-connected

and the nodes have degree 4 or more.

In Figure 5.23 we consider the size of the two components into which the

network is partitioned when it is disconnected. Note that, particularly for the

specially designed graphs, the large majority of disconnections involve the dis-

5.5. PROOF OF CORRECTNESS 131

Size of Disconnected Subgraph

P
ro

b
ab

ili
ty

0 5 10 15 20 25
0.0001

0.001

0.01

0.1

1.0
Random Graph

Robust Graph

Figure 5.23: The size of the smaller disconnected component when the

graph �rst partitions. Note that the scale on the vertical axis is logarith-

mic.

connection of only a few nodes. This is important as it may permit continuous

operation of the larger component despite the loss of contact with a subset of

the nodes. The robust graphs, however, remained connected on average �ve to

seven edge deletions longer than the random graphs with the smaller discon-

nected component being only one or two nodes in over 99% of the cases. This

work is also reported in [41].

5.5 Proof of Correctness

Membership

Uniqueness of Topologies

Theorem 5.1 Each topology identi�er is unique; moreover, at any time a pro-

cessor or gateway is a member of at most one topology.

Proof. A topology identi�er is the lexicographically ordered list of ring identi-

�ers of the rings that comprise the topology. By Theorem 4.1, the ring identi�ers

are unique and, therefore, a topology identi�er is unique.

On startup, a processor is a member of the topology whose identi�er is the

list consisting of the identi�er of the ring consisting of the processor itself, and

132 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

a gateway is a member of the topology whose identi�er is the pair of identi-

�ers of the rings between which it is a gateway. Each change in the topology

is signalled by delivery of a Topology Change message, which terminates the

current topology and initiates the next topology. Thus, at any time a processor

or gateway is a member of at most one topology. 2

Consensus

Theorem 5.2 If p and q are members of the same topology T

1

and neither

receives a Con�guration Change message that disconnects it from the other and

if p installs a subsequent topology T

2

with a given set of rings, then q determines

that the same set of rings constitutes its subsequent topology.

Proof. Since p and q are members of the same topology T

1

and neither re-

ceives a Con�guration Change message that disconnects it from the other, the

Topology Change message generated by p to initiate T

2

will be forwarded to q.

If q had already installed a subsequent topology T

3

, then the Topology Change

message initiating T

3

would also have been forwarded to p. Now either the

Topology Change message to initiate T

2

or the Topology Change message to

initiate T

3

has a smaller identi�er (timestamp, src ring id, type, conf id). The

one with the smaller identi�er will introduce the topology, and hence the set of

rings, installed by both p and q. 2

Termination

Theorem 5.3 If a topology ceases to exist for any reason such as processor

failure or network partitioning, then every processor of that topology will install

a new topology, or will fail before doing so.

Proof. Each topology change in the network is signalled by the receipt of a

Con�guration Change message from the single-ring protocol on each of the rings

directly a�ected by the topology change. (At a gateway, a Con�guration Change

message triggers a Network Topology message which signals the change.) Ac-

cording to the multiple-ring protocol, a gateway that receives a Con�guration

Change message will forward it onto the other attached ring. By Theorem 4.8,

5.5. PROOF OF CORRECTNESS 133

a processor (or gateway) executing the single-ring protocol on these rings will

deliver the Con�guration Change message to the multiple-ring protocol exe-

cuting, or will fail before doing so. If a con�guration change occurs before it

delivers the Con�guration Change message then, by Theorem 4.3, it will deliver

a Con�guration Change message for a di�erent con�guration, or will fail before

doing so. By Theorem 5.7, a processor or gateway executing the multiple-ring

protocol will deliver the Con�guration Change message or will fail before doing

so.

When a gateway delivers the Con�guration Change message, it sends a Net-

work Topology message. Network Topology messages are retransmitted on the

local ring if they are not received. When a gateway has received Network

Topology messages from all of the gateways on the directly attached ring that

experienced the con�guration change, it sends a Topology Change message. A

gateway will receive a Network Topology message from each of the other gate-

ways unless a further con�guration change occurs that results in its eliminating

the sender of the message from the topology. Since there are only a �nite num-

ber of gateways on a ring, only a �nite number can be eliminated and eventually

a gateway will have all of the Network Topology messages it needs to send a

Topology Change message.

Topology Change messages are forwarded by the gateways and are retrans-

mitted on the local ring if they are not received. If a forwarding path exists to

a processor or gateway, then it will receive and deliver the Topology Change

message in timestamp order. If no forwarding path exists, then the processor

or gateway eliminates the ring containing the sender of the message prior to

delivering the Topology Change message. 2

Topology Change Consistency

Theorem 5.4 Processors that are members of rings in the same topology T

2

deliver the same Initiate Topology T

2

message to begin the topology. Further-

more, if two processors install a topology T

2

directly after T

1

, then the processors

deliver the same Topology Change message to terminate T

1

and initiate T

2

.

Proof. The Initiate Topology T

2

message contains a list of identi�ers of the rings

in T

2

and is delivered when a processor installs topology T

2

. Thus, processors

134 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

that are members of the same topology T

2

deliver the same Initiate Topology

T

2

message to begin T

2

.

The Topology Change messages delivered by two processors that install T

2

directly after T

1

have the same identi�er and contents. If the topology change

consists of a ring deletion only and a message has been received from that ring,

then the timestamp of the Topology Change message is the highest timestamp

of a message in recv msgs for the ring to be deleted and the src ring id of

the Topology Change message is the identi�er of the ring to be deleted. If

the topology change consists of a ring deletion only and no message has been

received from that ring, then the timestamp of the Topology Change message is

the timestamp of the preceding Topology Change message and the src ring id

of the Topology Change message is the src ring id of the preceding Topology

Change message. Otherwise, the timestamp and src ring id of the Topology

Change message are those of the corresponding Con�guration Change message.

The contents of a Topology Change message specify the rings to be added to

the topology and the rings to be deleted from the topology.

If the Topology Change messages delivered by two processors that install T

2

directly after T

1

are Transitional Topology Change messages, the timestamp and

src ring id of the Transitional Topology Change message are the same as those

of the message requesting safe delivery. The conf id is the lowest ring identifer

in the set of singleton rings containing gateways introduced by the Transitional

Topology Change message. The contents of a Transitional Topology Change

message specify the rings to be added to the topology and the rings to be

deleted from the topology.

Topology Change messages and Transitional Topology Change messages are

delivered in the order of their identi�ers, along with the other messages. The

theorem now follows. 2

5.5. PROOF OF CORRECTNESS 135

Ordering

Reliable Delivery

Theorem 5.5 Each ordered message m has a unique identi�er.

Proof. Each message m is identi�ed by its timestamp, src ring id, type and

conf id �elds. In the modi�ed single-ring protocol, the processor that originates

a regular message m places a timestamp in m that is greater than the value in

the timestamp �eld of the token. The processor then places the timestamp of

m into the timestamp �eld of the token; thus, timestamps on regular messages

originated on a particular ring are unique. By Theorem 4.1, the src ring id is

unique. The type of a regular message is regular and the conf id �eld is 0.

A Con�guration Change message delivered by a processor to terminate a

con�guration C

1

and initiate another con�guration C

2

has a src ring id equal

to C

2

, which is unique by Theorem 4.1. If C

2

is a regular con�guration, then

the timestamp is the timestamp in the Commit token on its second rotation. If

C

2

is a transitional con�guration, then the timestamp is the highest timestamp

of any message delivered by the single-ring protocol before it delivered the Con-

�guration Change message. The type is Con�guration Change and the conf id

is the identi�er of C

2

. For each transition from a con�guration with identi�er

conf id to a con�guration with identi�er src ring id, all copies of the Con�gu-

ration Change message are identical and are regarded as the same message.

A Topology Change message that corresponds to a Con�guration Change

message (not a ring deletion only) has a timestamp, src ring id, and conf id equal

to the timestamp, src ring id, and conf id of the corresponding Con�guration

Change message. The type is Topology Change. If the topology change consists

of a ring deletion only and a message has been received from the ring to be

deleted, the timestamp of the Topology Change message is the max timestamp

for the ring to be deleted, the src ring id is the identi�er of the ring to be

deleted, the type is Topology Change, and the conf id is the identi�er of the

ring to be deleted. If the topology change consists of a ring deletion only and

no message has been received from the ring to be deleted, the timestamp of the

Topology Change message is the timestamp of the preceding Topology Change

message, the src ring id is the identi�er of that Topology Change message, the

136 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

type is Topology Change None, and the conf id is the identi�er of the ring to be

deleted.

All of the members of the topology initiated by the preceding Topology

Change message delete rings in the same order determined by the timestamp at

which they are unable to order messages (because of the lack of messages from

the ring to be deleted) and by the identi�ers of the rings to be deleted. Thus,

the Topology Change messages to delete a ring are generated with the same

timestamp, src ring id and conf id �elds.

A Transitional Topology Change message corresponds to a message that

requested safe delivery but that cannot be guaranteed as safe in the current

topology. The Transitional Topology Change message has a timestamp and

src ring id of the message requesting safe delivery. The conf id is the lowest

ring identi�er in the set of singleton rings containing gateways introduced by

the Transitional Topology Change message. If the system partitions, there

may be two Transitional Topology Change messages associated with the same

safe message and, thus, with the same timestamp and src ring id. These two

messages will, however, have di�erent conf id �elds.

Thus, the timestamp, src ring id, type and conf id �elds uniquely identify

the message. 2

Theorem 5.6 If processor p delivers message m, then p delivers m only once.

Moreover, if processor p delivers two di�erent messages, then p delivers one of

those messages strictly before it delivers the other.

Proof. By Theorem 5.5, each message has a unique identi�er. When processor

p receives a message, it places the message into its recv msgs list based on the

src ring id of the message, unless it has already placed a message with the same

identi�er in that list in which case it discards the message.

Processor p also maintains cand msgs which contains, for each ring in the

ring table, the message with the lowest timestamp in recv msgs for that ring.

The next message to be delivered is the message with the lowest timestamp in

cand msgs. When processor p delivers this message, p removes it from cand msgs

and replaces it with the message with the next higher timestamp in recv msgs

5.5. PROOF OF CORRECTNESS 137

for that ring and removes that message from recv msgs. The theorem now fol-

lows. 2

Theorem 5.7 If processor p executing the multiple-ring protocol receives a mes-

sage m from the single-ring protocol, then p will deliver m or will fail before

doing so, unless m was forwarded by a gateway that is not in the topology of p

as of the timestamp of the message.

Proof. Processor p maintains a data structure in its ring table for each ring in

the current topology, which includes the recv msgs list for that ring. Processor p

deletes a ring from its ring table only when it has delivered a Topology Change

or Transitional Topology Change message deleting that ring and it has delivered

all messages from that ring in recv msgs.

Processor p places each message m it receives from the single-ring protocol

into the recv msgs list of the ring whose identi�er is the src ring id of m, unless

p has already placed a copy of m in recv msgs in which case p discards m.

Processor p also discardsm ifm has a timestamp lower than the begin timestamp

of the gateway that forwarded the message; this gateway will not be added to

the topology until begin timestamp.

Processor p maintains the cand msgs list which contains, for each ring in the

ring table, the message with the lowest entry in the recv msgs list for that ring.

Processor p delivers messages from cand msgs in the order of their timestamps.

When processor p delivers a message, p removes it from cand msgs and replaces

it with the next lowest entry in recv msgs for that ring and removes that message

from recv msgs.

In order to remove a message from cand msgs and deliver it to the appli-

cation, processor p must have a message in cand msgs from each of the rings

in its ring table with a timestamp at least equal to that of the message to be

delivered. If processor p delivers message m in safe order, then all entries in

the column of the guarantee array, corresponding to the ring on which m was

generated, contain timestamps greater than or equal to the timestamp of m.

This indicates that p has received a Guarantee Vector message from each of the

rings indicating that the message is safe at the single-ring protocol level on each

138 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

of those rings. The Guarantee Vector messages, generated periodically by all

rings and the eventual delivery properties of the single-ring protocol (Theorem

4.9) ensure that this requirement will eventually be satis�ed, provided that all

rings in the current topology remain connected.

If a ring becomes disconnected, a Con�guration Change message will be

generated by the single-ring protocol. Receipt of this message will result in a

processor's generating a Topology Change message or a Transitional Topology

Change message to remove the disconnected ring from its ring table. Because

there are only a �nite number of identi�ers (timestamp, src ring id, type, conf id)

less than a given identi�er and only a �nite number of rings that can be removed

from the ring table, by induction it follows that these messages will eventually

be delivered to the application. 2

Theorem 5.8 Processor p executing the multiple-ring protocol delivers its own

messages or will fail.

Proof. By Theorem 4.7, processor p executing the single-ring protocol delivers

each message originated by p to the multiple-ring protocol at p. By Theorem

5.7, processor p executing the multiple-ring protocol delivers all messages re-

ceived from the single-ring protocol executed at p or will fail. 2

Theorem 5.9 If processor p is a member of topology T and no topology change

ever occurs, then processor p executing the multiple-ring protocol will deliver in

T all messages originated in T .

Proof. If no topology change ever occurs, then no con�guration change ever

occurs. Consequently, by Theorem 4.8, a processor or gateway receives the mes-

sages originated on its local ring from the single-ring protocol. The gateways

forward these messages throughout the network. Each forwarded message is

broadcast on the local rings onto which it is forwarded. Again, by Theorem

4.8, a processor or gateway on these rings also receives the messages from the

single-ring protocol. By Theorem 5.7, processor p executing the multiple-ring

protocol will deliver these messages to the application. 2

5.5. PROOF OF CORRECTNESS 139

Theorem 5.10 If processors p and q are both members of rings in consecutive

topologies T

1

and T

2

, then p and q executing the multiple-ring protocol deliver

the same set of messages in T

1

before delivering the Topology Change message

that terminates T

1

and initiates T

2

.

Proof. By Theorem 5.4, if processors p and q are both members of rings in

consecutive topologies T

1

and T

2

, then they both delivered the same Topology

Change message to terminate T

1

and initiate T

2

. Thus, they both have the

same rings in their ring table. By the forwarding of messages of the multiple-

ring protocol and by Theorem 4.10 processors p and q receive in T

1

the same

set of messages from the single-ring protocol. By Theorem 5.7, processors p

and q, executing the multiple-ring protocol, will deliver these messages. They

will then deliver the Topology Change message that terminates T

1

and initiates

T

2

. 2

Delivery in Causal Order for Topology T

Theorem 5.11 If m

1

precedes m

2

in the Lamport causal order and processor

p delivers both m

1

and m

2

, then p delivers m

1

before p delivers m

2

.

Proof. First we show for Lamport's causal precedence relations that if proces-

sor q originates message m

3

before processor q originates regular message m

4

or if q receives and delivers m

3

before q originates m

4

, then the identi�er of

m

3

is less than the identi�er of m

4

in the lexicographical order of identi�ers

(timestamp,src ring id,type,conf id).

When processor q receives a message it updates its my timestamp and also

itsmy future ring seq. The local variablesmy timestamp andmy future ring seq

are recorded to stable storage to ensure that any regular message originated by q

after q recovers from a failure is ordered after any message received or originated

by q before its failure.

When processor q originates a regular message, it increments its

my timestamp and uses that as the timestamp of the new message. The

src ring id of the message is the ring id of the ring of which q is a member

when it originated the message. The ring id.seq of that ring is greater than the

ring id.seq of any previous ring of which q was a member.

140 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

For Con�guration Change messages and Topology Change messages, the

type �eld ensures that these messages are delivered after any regular message

with the same timestamp and src ring id. If two or more Con�guration Change

messages or Topology Change messages corresponding to a ring deletion have

the same timestamp, src ring id and type, they are generated and delivered by

disjoint sets of processors in the order of the ring identi�ers in the conf id �eld.

The type �eld in the Transitional Topology Change message ensures that it is

delivered before any regular message with the same timestamp and src ring id.

If two or more Transitional Topology Change messages have the same times-

tamp and src ring id, they are generated and delivered in the order of the ring

identi�er in the conf id �eld.

By the transitivity on the lexicograpical order of identi�ers, if m

1

precedes

m

2

in the closure of the Lamport causal precedence relations, then the identi�er

of m

1

is less than the identi�er of m

2

.

By Theorem 5.18, if the identi�er of m

1

is less than the identi�er of m

2

, then

m

1

precedes m

2

in the Global Delivery Order. By Theorem 5.19, if p delivers

both m

1

and m

2

, and if m

1

precedes m

2

in the Global Delivery Order, then p

delivers m

1

before p delivers m

2

. 2

Theorem 5.12 If processor p originates message m with timestamp t, then

processor q delivers m if and only if p is a member of q's topology at timestamp t.

Proof. By the algorithm, at timestamp t, q delivers messages from only those

rings and processors represented in its ring table, i.e. from the members of its

current topology. If p is a member of q's topology at timestamp t and q has

received message m, then q delivers m. If p is a member of q's topology but q

does not receive message m, then q cannot deliver messages with timestamps

greater than or equal to t unless q generates a Topology Change message to

remove p from its topology at the timestamp of the last message from p delivered

by the single-ring protocol. Consequently, p is not a member of q's topology at

t. 2

Theorem 5.13 If processor q originates message m

1

, processor r originates

message m

2

, processor r delivers m

1

before r originates m

2

, processor p delivers

m

2

, Topology Change or Transitional Topology Change message m

0

delivered

5.5. PROOF OF CORRECTNESS 141

by p precedes m

1

in the Lamport causal order, and for every Topology Change

or Transitional Topology Change message delivered by p after m

0

and before

m

2

(including m

0

) r is a member of that topology, then p delivers m

1

before p

delivers m

2

.

Proof. If message m

0

precedes message m

1

in the Lamport causal order, then

the timestamp t

0

of m

0

is less than or equal to the timestamp t

1

ofm

1

. If proces-

sor p delivers message m

1

before it originates message m

2

, then the timestamp

t

1

of m

1

is less than the timestamp t

2

of m

2

. If processor r delivers m

1

then,

by Theorem 5.12, q is a member of r's topology at timestamp t

1

. But r is a

member of p's topology from t

0

� t

1

until t

2

> t

1

. Thus, q is a member of p's

topology at t

1

. By Theorem 5.12, p delivers m

1

. 2

Delivery in Agreed Order for Topology T

Theorem 5.14 The Topology Delivery Order for topology T is a total order.

Proof. By Theorem 5.5, each message delivered in topology T has a unique

identi�er (timestamp, src ring id, type, conf id). The lexicographical order on

these identi�ers de�nes a total order on the messages. 2

Theorem 5.15 If processor p delivers message m

2

in topology T and m

1

is any

message that precedes m

2

in the Topology Delivery Order for topology T , then p

delivers m

1

in T before p delivers m

2

.

Proof. If message m

1

precedes message m

2

in the Delivery Order for Topology

T , then the identi�er (timestamp, src ring id, type, conf id) of m

1

is less than

or equal to the identi�er of m

2

.

Processors executing the single-ring protocol on each ring originate regu-

lar messages with monotonically increasing sequence numbers and timestamps.

Messages are forwarded between rings by gateways in sequence number order,

and are delivered by the single-ring protocol to the multiple-ring protocol in se-

quence number order. Thus, if processor p executing the multiple-ring protocol

receives a message from the single-ring protocol originated on a ring then, by

142 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

Theorem 4.14, p will never subsequently receive any regular message originated

on that ring with a lower timestamp.

Now, the rings on which m

1

and m

2

were originated are in topology T and,

thus, are present in processor p's ring table when p delivered m

2

. If there had

been a disconnection that prevented m

1

from being communicated to p, a Con-

�guration Change message would have been generated leading to a Topology

Change message, disconnecting the source ring of m

1

immediately after the last

message received from that ring. That Topology Change message would have

terminated T . Since m

2

is delivered in topology T , the ring table contains a

message from the source ring of m

1

with an identi�er greater than or equal to

the identi�er of m

2

. Consequently, p received m

1

. Since m

2

has the lowest

identi�er in p's ring table, p has already delivered m

1

. 2

Delivery in Safe Order for Topology T

Theorem 5.16 If processor p executing the multiple-ring protocol delivers mes-

sage m in topology T and the originator of m requested safe delivery, then p has

determined that each processor in T has received m, and will deliver m or will

fail before doing so.

Proof. If processor p delivers message m in safe order, then all entries in

the column of its guarantee array, corresponding to the ring on which m was

generated, contain timestamps greater than or equal to the timestamp of m.

This condition indicates that p has received a Guarantee Vector message from

a gateway on each of the rings in T containing a guar vector with a timestamp

for the source ring of m that is greater than or equal to the timestamp of m.

A gateway will generate and forward such a Guarantee Vector message only

if the single-ring protocol executing at that gateway has delivered m in safe

order. By Theorem 4.15, the single-ring protocol delivers m in safe order only

if the gateway can determine that each of the processors and gateways on the

ring have received m. Therefore, processor p has determined indirectly that

each processor in topology T has received m. By Theorem 5.7, a processor p

executing the multiple-ring protocol that receives m will deliver m or will fail

before doing so. 2

5.5. PROOF OF CORRECTNESS 143

Extended Virtual Synchrony

Theorem 5.17 If processor p delivers message m in topology T , then the re-

quirements for agreed or safe delivery are satis�ed.

Proof. This follows from the preceding theorems. 2

Theorem 5.18 The Global Delivery Order is a total order.

Proof. By Theorem 5.5, each message has a unique identi�er consisting of a

timestamp, src ring id, type and conf id. The identi�er of a regular message m

consists of the timestamp of the message, the identi�er of the regular con�gu-

ration in which m was originated, the type regular, and the conf id �eld 0.

The identi�er of a Con�guration Change message that initiates a regular

con�guration contains a timestamp that is obtained from the Commit token,

whereas the identi�er of a Con�guration Change message that initiates a tran-

sitional con�guration contains a timestamp that is the highest timestamp of any

message delivered by the single-ring protocol before the Con�guration Change

message. The src ring id is the identi�er of the con�guration initiated by

the Con�guration Change message, the type is Con�guration Change, and the

conf id is the identi�er of the previous con�guration.

The identi�er of a Topology Change message for a con�guration change

(not a ring deletion only) consists of the timestamp, src ring id, and conf id

of the corresponding Con�guration Change message, and the type is Topology

Change. If the con�guration change is a ring deletion and a message has been

received from the ring to be deleted, then the timestamp is the max timestamp

for that ring, the src ring id is the identi�er of the ring to be deleted, the type

is Topology Change, and the conf id is the identi�er of the ring to be deleted.

If the con�guration change is a ring deletion only and no message has been

received from the ring to be deleted, then the timestamp is the timestamp of the

preceding Topology Change message, the src ring id is the source ring identi�er

of that Topology Change message, the type is Topology Change None, and the

conf id is the identi�er of the ring to be deleted.

144 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

The identi�er of a Transitional Topology Change message consists of the

timestamp and src ring id of the corresponding regular message (requesting safe

delivery). The type is Transitional Topology Change and the conf id is the

smallest ring identi�er in the new rings �eld of the message.

The lexicographical order on the identi�ers (timestamp, src ring id, type,

conf id) is a total order and, thus, the Global Delivery Order is a total order. 2

Theorem 5.19 If processor p delivers messages m

1

and m

2

and m

1

precedes

m

2

in the Global Delivery Order, then p delivers m

1

before p delivers m

2

.

Proof. Let (timestamp

1

, src ring id

1

, type

1

, conf id

1

) and (timestamp

2

,

src ring id

2

, type

2

, conf id

2

) be the identi�ers of messages m

1

and m

2

, respec-

tively. Without loss of generality, we assume that (timestamp

1

, src ring id

1

,

type

1

, conf id

1

) < (timestamp

2

, src ring id

2

, type

2

, conf id

2

). The proof is

an exhaustive case analysis.

If timestamp

1

< timestamp

2

then, according to the algorithm, processor p

delivers m

1

before p delivers m

2

.

If timestamp

1

= timestamp

2

and src ring id

1

< src ring id

2

, then, accord-

ing to the algorithm, processor p delivers m

1

before p delivers m

2

.

If timestamp

1

= timestamp

2

, src ring id

1

= src ring id

2

, type

1

= regular

and type

2

= regular, then conf id

1

= conf id

2

= 0 and this case cannot occur.

If timestamp

1

= timestamp

2

, src ring id

1

= src ring id

2

, type

1

= regular

and type

2

= Con�guration Change, then this case cannot occur. For if the Con-

�guration Change message m

2

introduces a regular con�guration, then all reg-

ular messages from that con�guration have higher timestamps than the times-

tamp of the Con�guration Change message m

2

. If the Con�guration Change

message m

2

introduces a transitional con�guration, then the source ring iden-

ti�er of any regular message is that of the regular con�guration in which that

message was originated and, thus, cannot equal the identi�er of the transitional

con�guration.

If timestamp

1

= timestamp

2

, src ring id

1

= src ring id

2

, type

1

= regular,

type

2

= topology change and the Topology Change corresponds to a Con�gu-

ration Change message (not a ring deletion only), then this case cannot occur

because the corresponding Con�guation Change message cannot exist.

5.5. PROOF OF CORRECTNESS 145

If timestamp

1

= timestamp

2

, src ring id

1

= src ring id

2

, type

1

= regular,

type

2

= Topology Change, the topology change corresponds to a ring deletion

and some message has been received from the ring to be deleted, then the

Topology Change message is delivered immediately after the last message from

that ring delivered by the multiple-ring protocol, i.e. the message with identi�er

(timestamp

1

,src ring id

1

,regular,0).

If timestamp

1

= timestamp

2

, src ring id

1

= src ring id

2

, type

1

= regular,

and type

2

= Topology Change None, then this case cannot occur. The Topology

Change None messagem

2

must be delivered immediately following the Topology

Change message that introduced the ring to be deleted. Thus, the Topology

Change None message m

2

has the same timestamp and source ring identi�er as

the Topology Change message and, thus, the same timestamp and source ring

identi�er as the Con�guration Change message corresponding to the Topology

Change message. Since the regular messagem

1

cannot have the same timestamp

and source ring identi�er as a Con�guration Change message, it cannot have

the same timestamp and source ring identi�er as the Topology Change None

message.

If timestamp

1

= timestamp

2

, src ring id

1

= src ring id

2

, type

1

= Con�g-

uration Change, and type

2

= Con�guration Change, then it cannot be the case

that one of the messages initiates a regular con�guration and the other initiates

a transitional con�guration because then src ring id

1

= src ring id

2

. If both

of the messages initiate a regular con�guration, then these messages correspond

to di�erent prior transitional con�gurations and a processor delivers only one

of these messages. If both messages initiate a transitional con�guration, then

conf id

1

= conf id

2

= 0 and this case cannot occur.

If timestamp

1

= timestamp

2

, src ring id

1

= src ring id

2

, type

1

= Con�gu-

ration Change, type

2

= Topology Change and the topology change corresponds

to a Con�guration Change message, then the Topology Change message is de-

livered immediately after the Con�guration Change message.

If timestamp

1

= timestamp

2

, src ring id

1

= src ring id

2

, type

1

= Con�g-

uration Change, type

2

= Topology Change, the topology change corresponds to

a ring deletion and some message has been received from the ring to be deleted,

then this case cannot occur. The timestamp of the Topology Change message is

146 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

the timestamp of the last regular message delivered from the ring to be deleted

and the source ring identi�er is the identi�er of that ring. But, no regular mes-

sage can have the same timestamp and source ring identi�er as a Con�guration

Change message.

If timestamp

1

= timestamp

2

, src ring id

1

= src ring id

2

, type

1

= Con�gu-

ration Change, and type

2

= Topology Change None, then the Topology Change

None message is delivered immediately after the Topology Change message as-

sociated with the Con�guration Change message.

If timestamp

1

= timestamp

2

, src ring id

1

= src ring id

2

, type

1

= Topology

Change corresponding to a Con�guration Change message, and type

2

= Topol-

ogy Change corresponding to a Con�guration Change message, then messages

m

1

and m

2

are associated with Con�guration Change messages that initiate the

same con�guration. A processor delivers only one such message.

If timestamp

1

= timestamp

2

, src ring id

1

= src ring id

2

, type

1

= Topol-

ogy Change corresponding to a Con�guration Change message, and type

2

=

Topology Change corresponding to a ring deletion and some message has been

received from the ring to be deleted, then this case cannot occur. Message

m

1

has the same timestamp and source ring identi�er as some Con�guration

Change message. Message m

2

has the same timestamp and source ring identi�er

as some regular message. But no Con�guration Change message and regular

message can have the same timestamp and source ring identi�er.

If timestamp

1

= timestamp

2

, src ring id

1

= src ring id

2

, type

1

= Topol-

ogy Change corresponding to a Con�guration Change message, and type

2

=

Topology Change None, then message m

2

is delivered immediately after mes-

sage m

1

.

If timestamp

1

= timestamp

2

, src ring id

1

= src ring id

2

, type

1

= Topology

Change corresponding to a ring deletion and some message has been received

from the ring to be deleted, and type

2

= Topology Change corresponding to a

ring deletion and some message has been received from the ring to be deleted,

then conf id

1

= conf id

2

and so this case cannot occur.

If timestamp

1

= timestamp

2

, src ring id

1

= src ring id

2

, type

1

= Topology

Change corresponding to a ring deletion and some message has been received

from the ring to be deleted, and type

2

= Topology Change None, then this case

5.6. SUMMARY 147

cannot occur. Message m

1

has the same timestamp and source ring identi�er

as a regular message. Message m

2

has the same timestamp and source ring

identi�er as a Con�guration Change message. But a regular message and a

Con�guration Change message cannot have the same timestamp and source

ring identi�er.

If timestamp

1

= timestamp

2

, src ring id

1

= src ring id

2

, type

1

= Topology

Change None, and type

2

= Topology Change None then, by the algorithm,

messages m

1

and m

2

are delivered in the order of the identi�ers of the rings to

be deleted.

If timestamp

1

= timestamp

2

, src ring id

1

= src ring id

2

, type

1

= type

2

=

Transitional Topology Change, then this case cannot occur. Processor p delivers

either m

1

or m

2

because m

1

and m

2

are generated in disjoint topologies.

If timestamp

1

= timestamp

2

, src ring id

1

= src ring id

2

, type

1

= Tran-

sitional Topology Change, and type

2

= regular then, by the algorithm, the

Transitional Topology Change message m

1

is delivered immediately before the

corresponding safe message m

2

.

If timestamp

1

= timestamp

2

, src ring id

1

= src ring id

2

, type

1

= Tran-

sitional Topology Change, and type

2

= Con�guration Change, then there

must have been a regular message m

3

that requested safe delivery such that

timestamp

1

=timestamp

3

and src ring id

1

= src ring id

3

. As demonstrated

above m

1

is delivered m

3

and m

3

is delivered m

2

and, therefore, m

1

is delivery

before m

2

. The arguments for type

2

= Topology Change and type

2

= Topology

Change None are similar.

In any case, processor p deliversm

1

before p delivers m

2

. The Global Deliv-

ery Order is, thus, the set of messages delivered by all of the processors. 2

5.6 Summary

The Totem multiple-ring protocol uses a hierarchical approach to provide re-

liable ordered delivery of messages across interconnected rings. It allows the

design of fault-tolerant distributed systems to be simpli�ed through the use

of reliable ordered message delivery by exploiting e�cient local-area message

ordering and processor membership protocols.

148 CHAPTER 5. THE MULTIPLE-RING PROTOCOL

Although several reliable ordered message delivery protocols have been de-

veloped in the past, none has adequately addressed the di�cult issues of main-

taining consistency in a network that partitions and remerges. The multiple-ring

protocol leverages o� the previous work on reliable ordered delivery in broadcast

domains to provide message delivery across a larger network, while maintaining

consistency through partitioning and remerging of the network.

The multiple-ring protocol provides message delivery in a total order that is

consistent across the entire network. Total ordering of messages across a larger

network may delay the ordering of a message longer than the message would

have been delayed with partial ordering of messages. This longer delay is due to

the need to satisfy the additional constraints of the total order. Partial ordering

may, however, introduce inconsistencies in message delivery if partitioning and

remerging occurs.

Chapter 6

Conclusions and

Recommendations

This dissertation has presented a reliable ordered delivery protocol, called

Totem, for interconnected local-area networks. Each local-area network is as-

sumed to be a broadcast domain; imposed on the broadcast domain is a logical

token-passing ring. The single-ring protocol delivers messages in a total order

to the multiple-ring protocol which, in turn, delivers messages in a total order to

the next higher layer in the protocol stack. Messages are ordered by timestamp,

and messages with the same timestamp are ordered by source ring identi�er. If

the timestamp and source ring identi�er are the same, messages are ordered by

type. This ordering on messages provides a single consistent total order across

the entire network, even though some messages may not be delivered to all pro-

cessors. Timestamps can be used to order messages only if a processor knows

that it has received all of the preceding messsages in the order. Receipt of such

messages is guaranteed by the consecutive sequence numbers on the individual

rings and by the Guarantee Vector messages that are forwarded through the

network.

The dissertation also presents a membership algorithm for Totem that pro-

vides recovery from processor failure and network partitioning, as well as loss

of all copies of the token. The membership algorithm is integrated with the

message ordering algorithm to provide consistent membership information to

the application. The Con�guration Change messages ordered by the single-ring

150 CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

protocol are used by the multiple-ring protocol to maintain consistent topology

information. Each gateway in the network maintains the current topology, and

topology changes are indicated by Topology Change messages. These messages

are delivered to the application in a consistent total order along with the other

messages. Consistent information regarding membership and topology changes

is important for the application programs since they are making decisions re-

garding which action to take based on which processors are currently in the

network when a message is delivered.

As a part of the work on Totem we have rede�ned the consistency require-

ments to allow separate components of a network to continue ordering messages

after partitioning and remerging. In particular, we have introduced the concept

of extended virtual synchrony, which extends the properties of virtual synchrony

de�ned by Birman and others [13]. Extended virtual synchrony ensures that the

processors are provided membership information in an order that is consistent

with the order of the regular messages.

An implementation of the Totem single-ring protocol on Sun IPC Sparcsta-

tions over a 10Mbit Ethernet has been completed. Five processors executing

the protocol achieved a throughput of approximately 810 KBytes/second while

passing messages containing 1 KByte of data each. This performance com-

pares favorably to Isis and Transis which achieved 151 KBytes/second and 300

KBytes/second respectively with similar equipment [5, 13].

The performance of the single-ring membership algorithm has also proven

excellent. The same �ve processors executing the membership algorithm re-

quired on average 40 milliseconds to reach consensus on the membership of a

token ring, to form the token ring, and to begin normal operation after de-

termining that the token was lost. With the token retransmission mechanism

activated, the time to resume normal operation was less than 20 milliseconds

on average.

An implementation of the Totem multiple-ring protocol has also been com-

pleted on Sun IPC Sparcstations over two 10Mbit Ethernets with a Sparcstation

20 acting as a gateway between the two Ethernets. Three processors on each

ring achieved a throughput of approximately 625 KBytes/second while passing

messages containing 1 KByte of data each. This compares to a throughput

151

of approximately 769 KBytes/second for the single-ring with three processors.

The multiple-ring protocol adds approximately 0.28 milliseconds per message

in ordering overhead.

Although the foundation of a system has been laid by the work in this

dissertation, there are still several issues that need to be addressed to complete

the work on the Totem system. These issues include process groups, adaptive

ow control, routing, real-time guarantees, application tools and demonstration

applications.

In a distributed system, processes executing application tasks normally co-

operate in groups with each group spanning only a subset of the processors.

The di�culty lies in maintaining consistency of the message order when there

are overlapping process groups. The totally ordered message delivery provided

by the Totem protocol ensures that consistency is maintained across all process

groups and all messages. Messages are ordered network-wide, but messages des-

tined for a particular process group are only delivered to the members of that

group. Design and implementation of the Totem process group interface and

membership protocol is complete.

The Totem multiple-ring protocol is the �rst protocol known to provide

consistent reliable ordered delivery of messages across interconnected broadcast

domains, but its real potential will be realized when process group dependent

forwarding of messages is implemented. This will require a gateway to �lter mes-

sages so that messages are forwarded only if there is a member of the destination

process group in the direction of the forwarding. The multiple-ring member-

ship/topology protocol and the process group membership protocol provide the

foundation for this �ltering mechanism. The e�ective throughput seen by each

application should improve signi�cantly once �ltering is implemented. This is

particularly true in cases where the process groups exhibit a high degree of

locality and their messages need not be forwarded across the entire network.

The current version of Totem assumes that all messages are
ooded through

the network. Other routing strategies, such as spanning trees, need to be inves-

tigated, as well as their e�ect on maintaining a consistent total order. This may

involve modi�cations to the current protocol, but will certainly bene�t from the

current version. Among the interesting questions to be investigated related to

152 CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

routing are the e�ects of failures on maintaining routes, changing the routes

without disrupting the total order on messages, providing di�erent routes for

messages intended for di�erent process groups, and selection of routing strate-

gies to enhance performance.

The rudimentary
ow-control mechanisms implemented in the single-ring

protocol and in the multiple-ring protocol do not adapt to changing conditions

in the network. The multiple-ring protocol
ow control is designed to allow

the gateways and processors in the network to signal congestion conditions

and to avoid message loss, and has been e�ective at accomplishing this goal.

But, its current response of refusing all new messages from the application

processes until the congestion is relieved may be too harsh. A solution which

adaptively modi�es the
ow-control parameters to maintain high throughput

and low latency without congestion might provide better characteristics at the

application interface. In particular, the single-ring protocol needs to adapt to

the load o�ered by a gateway and to allow it to forward messages.

Although reliable ordered delivery protocols have been around for a num-

ber of years, the limited performance and correctness criteria have hampered

their usefulness to application developers. We believe that the Totem protocol

provides signi�cant improvements in both of these areas and will ease the appli-

cation developer's task. Application developers need, however, to rethink their

designs to utilize reliable ordered delivery protocols e�ectively. Relatively little

work in this area has been done, and more e�ort to develop interface tools and

demonstration applications is warranted.

Bibliography

[1] D. A. Agarwal, P. M. Melliar-Smith, and L. E. Moser. Totem: A protocol

for message ordering in a wide-area network. In Proceedings of the First In-

ternational Conference on Computer Communications and Networks, pages

1{5, San Diego, CA, June 1992.

[2] D. Agrawal and A. El Abbadi. Integrating security with fault-tolerant

distributed databases. The Computer Journal, 33(1):71{78, 1990.

[3] D. Agrawal and A. El Abbadi. Storage e�cient replicated databases. IEEE

Transactions on Knowledge and Data Engineering, 2(3):342{352, Septem-

ber 1990.

[4] D. Agrawal and A. Malpani. E�cient dissemination of information in com-

puter networks. The Computer Journal, 34(6):534{541, 1991.

[5] Y. Amir. Performance measurements of Transis. Private communication,

August 1992.

[6] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Membership algorithms for

multicast communication groups. In Proceedings of the 6th International

Workshop on Distributed Algorithms, Lecture Notes in Computer Science

647, pages 292{312, Haifa, Israel, November 1992.

[7] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication

sub-system for high availability. In Proceedings of the 22nd Annual Inter-

national Symposium on Fault-Tolerant Computing, pages 76{84, Boston,

MA, July 1992.

154 BIBLIOGRAPHY

[8] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella.

Fast message ordering and membership using a logical token-passing ring.

In Proceedings of the 13th International IEEE Conference on Distributed

Computing Systems, pages 551{560, Pittsburgh, PA, May 1993.

[9] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, and R. Reischuk.

Achievable cases in an asynchronous environment. In 28th Annual Sym-

posium on Foundations of Computer Science, pages 337{346, Los Angeles,

CA, October 1987.

[10] D. Bertsekas and R. Gallager. Data Networks, 2nd ed. Prentice Hall, 1992.

[11] K. P. Birman. A response to Cheriton and Skeen's criticism of causal and

totally ordered communication. Operating Systems Review, 28(1):11{21,

January 1994.

[12] K. P. Birman and T. A. Joseph. Reliable communication in the presence of

failures. ACM Transactions on Computer Systems, 5(1):47{76, February

1987.

[13] K. P. Birman, A. Schiper, and P. Stephenson. Lightweight causal

and atomic group multicast. ACM Transactions on Computer Systems,

9(3):272{314, August 1991.

[14] F. T. Boesch and R. Tindell. Circulants and their connectivities. Journal

of Graph Theory, 8(4):487{499, 1984.

[15] S. Casner and S. Deering. First IETF Internet audiocast. Computer Com-

munications Review, 22(3):92{97, July 1992.

[16] T. Chandra and S. Toueg. Unreliable failure detectors for asynchronous

systems. In Proceedings of the Tenth ACM Symposium on Principles of

Distributed Computing, pages 325{340, Montreal, Qu�ebec, August 1991.

[17] J. M. Chang and N. F. Maxemchuk. Reliable broadcast protocols. ACM

Transactions on Computer Systems, 2(3):251{273, August 1984.

BIBLIOGRAPHY 155

[18] D. R. Cheriton and D. Skeen. Understanding the limitations of causally

and totally ordered communication. Operating Systems Review, 27(5):44{

57, December 1993.

[19] W. J. Chun. Virtual gateways: Performing distributed simulations in the

Totem protocol development environment. Master's thesis, University of

California, Santa Barbara, 1994.

[20] P. W. Ciarfella. The Totem protocol testbed. Master's thesis, University

of California, Santa Barbara, 1993.

[21] P. W. Ciarfella, L. E. Moser, P. M. Melliar-Smith, and D. A. Agarwal. The

Totem protocol development environment. In Proceedings of the 1994 In-

ternational Conference on Network Protocols, pages 168{177, Boston MA,

October 1994.

[22] F. Cristian. Synchronous atomic broadcast for redundant broadcast chan-

nels. Journal of Real-Time Systems, 2:195{212, 1990.

[23] F. Cristian. Understanding fault-tolerant distributed systems. Communi-

cations of the ACM, 34(2):56{78, February 1991.

[24] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in partitioned

networks. Computing Surveys, 17(3):341{370, September 1985.

[25] D. Dolev, S. Kramer, and D. Malki. Early delivery totally ordered multicast

in asynchronous environments. In 23nd Annual International Symposium

on Fault-Tolerant Computing, pages 544{553, Toulouse, France, June 1993.

[26] A. El Abbadi and S. Toueg. Maintaining availability in partitioned repli-

cated databases. ACM Transactions on Database Systems, 14(2):264{290,

June 1989.

[27] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for

distributed consensus problems. Distributed Computing, 1:26{39, 1986.

[28] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed

consensus with one faulty process. Journal of the Association of Computing

Machinery, 32(2):374{382, April 1985.

156 BIBLIOGRAPHY

[29] N. C. Hutchinson and L. L. Peterson. Design of the x-kernel. In Proceedings

ACM SIGCOMM `88 Symposium on Communications Architectures and

Protocols, pages 65{75, 1988.

[30] N. C. Hutchinson and L. L. Peterson. The x-kernel: An architecture for

implementing network protocols. IEEE Transactions on Software Engi-

neering, 17(1):64{76, January 1991.

[31] M. F. Kaashoek. Group communication in distributed computer systems.

Technical report, Vrije Universiteit, Amsterdam, 1992.

[32] M. F. Kaashoek and A. S. Tanenbaum. Group communication in the

Amoeba distributed operating system. In International Conference on Dis-

tributed Computing Systems, pages 222{230, Arlington, TX, May 1991.

[33] M. King. A network monitor for the Totem simulation testbed. Master's

thesis, University of California, Santa Barbara, 1993.

[34] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft,

and R. Zainlinger. Distributed fault-tolerant real-time systems: The Mars

approach. IEEE Micro, pages 25{40, February 1989.

[35] H. Kopetz and G. Gr�unsteidl. TTP{ A protocol for fault-tolerant real-time

systems. Computer, 27(1):14{23, January 1994.

[36] L. Lamport. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM, 21(7):558{565, July 1978.

[37] C. A. Lingley-Papadopoulos. The Totem process group membership and

interface. Master's thesis, University of California, Santa Barbara, 1994.

[38] S. W. Luan and V. D. Gligor. A fault-tolerant protocol for atomic broad-

cast. In Proceedings of the 7th Symposium on Reliable Distributed Systems,

pages 112{126, Columbus, Ohio, October 1988.

[39] N. A. Lynch. A hundred impossibility proofs for distributed computing. In

Proceedings of the Eighth Annual ACM Symposium on Principles of Dis-

tributed Computing, pages 1{28, Edmonton, Alta., Canada, August 1989.

BIBLIOGRAPHY 157

[40] P. M. Melliar-Smith and L. E. Moser. Trans: A reliable broadcast protocol.

IEE Transactions on Communications, 140(6):481{493, December 1993.

[41] P. M. Melliar-Smith, L. E. Moser, and D. A. Agarwal. Ring-based ordering

protocols. In Proceedings of the International Conference on Information

Engineering, pages 882{891, Singapore, December 2-5 1991.

[42] P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Broadcast protocols

for distributed systems. IEEE Transactions on Parallel and Distributed

Systems, 1(1):17{25, January 1990.

[43] S. Mishra, L. L. Peterson, and R. D. Schlichting. A membership proto-

col based on partial order. In Proceedings of the International Working

Conference on Dependable Computing for Critical Applications, volume 6,

pages 309{331, Tucson, AZ, February 1991.

[44] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended

virtual synchrony. In Proceedings of the 14th IEEE International Con-

ference on Distributed Computing Systems, pages 56{65, Poznan, Poland,

June 1994.

[45] L. E. Moser, P. M. Melliar-Smith, and V. Agrawala. Asynchronous fault-

tolerant total ordering algorithms. SIAM Journal of Computing, 22(4):727{

750, August 1993.

[46] L. E. Moser, P. M. Melliar-Smith, and V. Agrawala. Necessary and su�-

cient conditions for broadcast consensus protocols. Distributed Computing,

7(2):75{85, December 1993.

[47] L. E. Moser, P. M. Melliar-Smith, and V. Agrawala. Processor membership

in asynchronous distributed systems. IEEE Transactions on Parallel and

Distributed Systems, 5(5):459{473, May 1994.

[48] B. M. Oki and B. H. Liskov. Viewstamped replication: A new primary copy

method to support highly-available distributed systems. In Proceedings of

the ACM Symposium on Principles of Distributed Computing, pages 8{17,

Toronto, Canada, 1988.

[49] L. L. Peterson, N. C. Buchholz, and R. D. Schlichting. Preserving and using

context information in interprocess communication. ACM Transactions on

Computer Systems, 7(3):217{246, August 1989.

[50] B. Rajagopalan and P. K. McKinley. A token-based protocol for reliable,

ordered multicast communication. In Proceedings of the 8th IEEE Sympo-

sium on Reliable Distributed Systems, pages 84{93, Seattle, WA, October

1989.

[51] A. M. Ricciardi and K. P. Birman. Using process groups to implement

failure detection in asynchronous environments. In Proceedings of the Tenth

ACM Symposium on Principles of Distributed Computing, pages 341{353,

Montreal, Quebec, Canada, August 1991.

[52] R. D. Schlichting and F. B. Schneider. Fail-stop processors: an approach to

designing fault-tolerant computing systems. ACM Transactions on Com-

puter Systems, 1(3):222{238, August 1983.

[53] A. Siegel. Performance in
exible distributed �le systems. PhD thesis,

Cornell University, 1992.

[54] J. S. Turner. New directions in communications (or which way to the

information age?). IEEE communications Magazine, 24(10):8{15, October

1986.

[55] R. van Renesse. Why bother with CATOCS. Operating Systems Review,

28(1):22{27, January 1994.

Appendix A

A User's Guide for Totem

This appendix describes how to compile and run the Totem protocol. Totem

provides reliable ordered delivery of messages across interconnected broadcast

domains. Reliable ordered delivery within a broadcast domain is provided by the

single-ring protocol. The multiple-ring protocol uses the single-ring protocol to

provide reliable ordered delivery across interconnected broadcast domains. The

Totem protocol code has been designed to run either as an implementation or

as a simulation.

The Implementation

The Totem protocol has been implemented in C and has been tested on Sun

IPC Sparcstations running Sun OS 4.1.1 on a 10Mbit/s Ethernet. The code has

been compiled using gcc version 2.3.3. The code was also recently compiled on

Sun OS 4.1.3 using gcc without problems.

The current implementation uses UNIX UDP sockets to broadcast messages

and to transfer the token. The token socket numbers are deterministic based

on processor identi�er and network identi�er. The system clock is utilized to

track all timing information.

To allow greater
exibility, multiple rings can be run on a single Ethernet.

This allows the use of a processor with only one network interface as a gateway

by de�ning two virtual network interfaces on the one actual interface; each

gateway runs as a single process on a processor. We have found in practice

160 APPENDIX A. A USER'S GUIDE FOR TOTEM

that up to four rings can be run on a single Ethernet before the performance

degrades too far to be useful. This number was determined running Sun 4/IPC

processors and will probably decrease with faster processors that are better able

to saturate a single Ethernet.

The Totem protocol can be exercised either by a packet driver which gen-

erates periodic tra�c or by application processes which pass messages. For a

description of the application interface routines, refer to [37].

The Simulator

The need to study the protocols in a controlled environment led to the devel-

opment of a simulation testbed. The simulator allows testing and debugging of

the protocol.

The simulator is executed by linking in simulated versions of the system clock

and system socket calls. The simulated clock halts time when an individual

processor is halted and continues when the processor continues. This allows

an individual processor to be halted in the simulator and in the system beingq

studied while the other processors wait for the halted processor.

The simulator tries to keep all the processors executing in parallel as much

as possible. This task is more di�cult than would appear since the processors

do not operate in lock-step. The simulator must determine whether the current

next event for a processor is indeed the next event to be executed by the proces-

sor; the current next event may in fact be preceded by the receipt of a message

or receipt of the token, since these events are generated by outside sources.

The simulator uses a simpli�ed state machine model of the protocol to rep-

resent events. This state machine is used to decide whether to execute the

next event for a processor. The simulator is separated into two parts: one that

models the communication medium and the other that provides the processor

interface to the communication medium. The communication medium model

maintains a global event list which registers the events for each of the proces-

sors. It also maintains the system clock and a state machine for each of the

processors.

161

The communication medium model maintains the global clock in shared

memory. This memory can be accessed by the processors. Shared memory is

also used to implement the socket select calls. A more complete description of

the simulator can be found in [20].

The simulator also allows execution of the multiple-ring protocol. To ac-

complish this, the gateway is split across two physical processors where each

processor is running a separate ring. The two components of the gateway are

connected by a TCP socket which provides reliable message delivery between

the two portions of the gateway. The multiple-ring protocol extensions to the

simulator are described in [19].

A network monitor has been developed in Motif for use in monitoring the

activity of the Totem single-ring protocol within the simulator. The monitor

provides a graphical display of the progress of message delivery and membership

in the protocol. A more complete description of the network monitor can be

found in [33].

Compilation of Totem

The Totem code is divided into four subdirectories:

SRC - source code �les

HDR - header �les

OBJ - compiled object �les

EXEC - protocol executables.

The make �le for the Totem protocol has four targets:

totem - Totem implementation version of a processor or gateway

pm - Totem simulator version of a processor or gateway

cmm - Totem simulator for the communication medium model

xtmm - Totem simulator monitor (requires Motif to compile).

162 APPENDIX A. A USER'S GUIDE FOR TOTEM

The totem and pm executables have similar arguments. These arguments

can be speci�ed on the command line or a con�guration �le. The command line

must at least contain a -c or -f argument to be valid. Defaults for most of the

rest of the arguments are supplied automatically:

-f <con�g �le> - allows speci�cation of the arguments in a �le

-c <computer number> - computer number of this processor (assumed to

be unique)

-n <network num> - network to which to connect; this defaults to the local

network

-d <discard limit> - number of messages to deliver before halting execution

-e <mess each round> - maximum number of messages sent on a token visit

-w <window size> - maximum number of messages that can be sent in a

token rotation

-o - run only the single-ring protocol

-p - use the packet driver to generate tra�c

-s <message size> - size of each message if using the packet driver

-t <monitor hostname> - name of the machine running the xtmm protocol

monitor (used only with the simulator)

-u - deliver packets to the user (requires the multiple-ring protocol to be run-

ning)

The cmm executable also has arguments which can be speci�ed on the com-

mand line.

-f <events �le> - �le containing scheduled network partition events

-m <probability> - message reception probability

-t <probability> - token reception probability.

163

Examples

Implementation

To run the Totem implementation using the packet driver to generate tra�c,

type

totem -c 101 -p

To run the Totem implementation with a user application above it (the packet

driver should not be run if a user is speci�ed), type

totem -c 200 -u

To run the Totem implementation using a con�guration �le, type

totem -f proc1.cfg

where the �le proc1.cfg contains the line

srp: -c 101 -n 63

The Totem protocol is normally run on several processors simultaneously, and

each processor is given a unique computer number. To run several rings on a

single Ethernet, use the network number to specify a network number for each

ring. When running a gateway, the computer and network numbers must be

speci�ed in a con�guration �le. To run a gateway which also contains a packet

driver, type

totem -f gway1.cfg -g -p

where the �le gway1.cfg contains the lines

srp: -c 94 -n 193

srp: -c 35 -n 154

Simulator

To run the simulator, �rst start the cmm. Once the cmm has been started, the

individual pms can be started to simulate the actual processors on the network.

The individual processors and the cmm should be run on the same physical

processor.

cmm

To run the simulator with 5% message loss, type

cmm -m 0.95

164 APPENDIX A. A USER'S GUIDE FOR TOTEM

To run partitioning scenarios using an events �le, type

cmm -f part.cfg

The �le part.cfg contains

<event type> <simulation time> <network> <listing of processors in each

partition>

partition: 40000000 193 (100 104 105) (101 103)

partition: 65000000 193 (100 104 101 103 105)

partition: 74000000 193 (100 101) (105) (104 103)

To run an individual processor in the simulation with the packet driver, use

the following command on the same physical processor as the one on which the

cmm is running:

pm -c 101 -p

The same arguments can be used with pm as were used in the examples. The -t

argument is, however, used only with the pm to connect to the protocol monitor.

For example, to connect a pm to a monitor running on a machine named omega,

type

pm -c 201 -t omega

For a description of how to run the simulator with multiple rings, refer to [19].

For a description of how to run the network monitor, refer to [33]. Note that

the xtmm runs without arguments and should be started before any of the pms.

The pms need to be run with the -t option to have their status displayed by the

xtmm. Each instance of the xtmm can display the status of a single cmm.

Parameters in Totem

There are several parameters which can be set to customize the Totem protocol.

These parameters are all in the �le HDR/ring public.h and include everything

from frequency of status printouts to
ow control parameters.

Defaults

#de�ne COMP NUM DEFAULT -1

#de�ne MEMB SIZE DEFAULT 9999

#de�ne DISCARD LIMIT DEFAULT 100000

#de�ne EACH TIME DEFAULT 10

165

#de�ne WINDOW SIZE DEFAULT 50

#de�ne MESSAGE SIZE DEFAULT 1024

#de�ne NETWORK DEFAULT 63 /* Hard-coded per site */

#de�ne MAX DATA PACKET 1460 /* max will be 1512 */

#de�ne MAX REQUESTS 90

#de�ne MAX PROC RING 60

#de�ne MAX GWAY RING 25

Single-Ring Parameters

Seconds between status printouts

#de�ne SRP DEBUG TIMEOUT 500

Parameters for delay of token when there is no tra�c on the ring.

Delay before retransmitting token

#de�ne MAX TKN RETRANS SEC 0

#de�ne MAX TKN RETRANS USEC 800000

Max delay any one processor can add to token

#de�ne MAX DELAY PROC 50000

Number of rounds of no tra�c before delay

#de�ne MAX FAST ROUNDS 30

Limit for number of times the aru has been seen unchanged for failure to receive.

#de�ne FAIL RCV LIMIT 20

Single-Ring Membership Parameters

#de�ne JOIN TMO SEC 1

#de�ne JOIN TMO USEC 300000

#de�ne CONSENSUS TMO SEC 3

#de�ne CONSENSUS TMO USEC 750000

#de�ne TOKEN TMO SEC 8

#de�ne TOKEN TMO USEC 500000

Multiple-Ring Parameters

#de�ne MAX PACKET GAP (2�EACH TIME DEFAULT)

Timeout for periodic status message

#de�ne WAP DEBUG TIMEOUT 8

Maximum Numbers for Topology

Max rings in topology graph or message

166 APPENDIX A. A USER'S GUIDE FOR TOTEM

#de�ne MAX NODES 20

Max gateways listed in topology message

#de�ne MAX EDGES 40

Packet Driver Parameters

De�nes the maximum number of packets in the send queue when the packet

driver is done as a multiple of window size.

#de�ne MAX QUEUE MULTIPLE 1

De�nes how often the periodic null packet driver is called

#de�ne NULL PERIODIC TMO SECS 2

#de�ne NULL PERIODIC TMO USECS 100000

De�nes how often the packet driver is called

#de�ne PKT DRVR TMO SECS 5

#de�ne PKT DRVR TMO USECS 500000

Flow Control Parameters

Constants for determining upper and lower thresholds for send queue
ow con-

trol.

When send queue reaches this level block site

#de�ne MAX SRP SND Q 300

When send queue gets back down to this level unblock site

#de�ne MIN SRP SND Q 250

User Applications

An application built on top of Totem must use the calls for the process group

interface de�ned in [37]. To build a user application on top of Totem, see the

source �le ha.c (high availability) which contains the routines that must be used.

