from __future__ import annotations from collections import defaultdict from typing import Any, Dict, List, Optional, Set, Union import logging from .variable import Variable from .section import VariableSection logger = logging.getLogger(__name__) class VariableCollection: """Manages variables grouped by sections and builds Jinja context.""" def __init__(self, spec: dict[str, Any]) -> None: """Initialize VariableCollection from a specification dictionary. Args: spec: Dictionary containing the complete variable specification structure Expected format (as used in compose.py): { "section_key": { "title": "Section Title", "prompt": "Optional prompt text", "toggle": "optional_toggle_var_name", "description": "Optional description", "vars": { "var_name": { "description": "Variable description", "type": "str", "default": "default_value", ... } } } } """ if not isinstance(spec, dict): raise ValueError("Spec must be a dictionary") self._sections: Dict[str, VariableSection] = {} # NOTE: The _variable_map provides a flat, O(1) lookup for any variable by its name, # avoiding the need to iterate through sections. It stores references to the same # Variable objects contained in the _set structure. self._variable_map: Dict[str, Variable] = {} self._initialize_sections(spec) # Validate dependencies after all sections are loaded self._validate_dependencies() def _initialize_sections(self, spec: dict[str, Any]) -> None: """Initialize sections from the spec.""" for section_key, section_data in spec.items(): if not isinstance(section_data, dict): continue section = self._create_section(section_key, section_data) # Guard against None from empty YAML sections (vars: with no content) vars_data = section_data.get("vars") or {} self._initialize_variables(section, vars_data) self._sections[section_key] = section # Validate all variable names are unique across sections self._validate_unique_variable_names() def _create_section(self, key: str, data: dict[str, Any]) -> VariableSection: """Create a VariableSection from data.""" section_init_data = { "key": key, "title": data.get("title", key.replace("_", " ").title()), "description": data.get("description"), "toggle": data.get("toggle"), "required": data.get("required", key == "general"), "needs": data.get("needs"), } return VariableSection(section_init_data) def _initialize_variables( self, section: VariableSection, vars_data: dict[str, Any] ) -> None: """Initialize variables for a section.""" # Guard against None from empty YAML sections if vars_data is None: vars_data = {} for var_name, var_data in vars_data.items(): var_init_data = {"name": var_name, **var_data} variable = Variable(var_init_data) section.variables[var_name] = variable # NOTE: Populate the direct lookup map for efficient access. self._variable_map[var_name] = variable # Validate toggle variable after all variables are added self._validate_section_toggle(section) # TODO: Add more section-level validation: # - Validate that required sections have at least one non-toggle variable # - Validate that enum variables have non-empty options lists # - Validate that variable names follow naming conventions (e.g., lowercase_with_underscores) # - Validate that default values are compatible with their type definitions def _validate_unique_variable_names(self) -> None: """Validate that all variable names are unique across all sections.""" var_to_sections: Dict[str, List[str]] = defaultdict(list) # Build mapping of variable names to sections for section_key, section in self._sections.items(): for var_name in section.variables: var_to_sections[var_name].append(section_key) # Find duplicates and format error duplicates = { var: sections for var, sections in var_to_sections.items() if len(sections) > 1 } if duplicates: errors = [ "Variable names must be unique across all sections, but found duplicates:" ] errors.extend( f" - '{var}' appears in sections: {', '.join(secs)}" for var, secs in sorted(duplicates.items()) ) errors.append( "\nPlease rename variables to be unique or consolidate them into a single section." ) error_msg = "\n".join(errors) logger.error(error_msg) raise ValueError(error_msg) def _validate_section_toggle(self, section: VariableSection) -> None: """Validate that toggle variable is of type bool if it exists. If the toggle variable doesn't exist (e.g., filtered out), removes the toggle. Args: section: The section to validate Raises: ValueError: If toggle variable exists but is not boolean type """ if not section.toggle: return toggle_var = section.variables.get(section.toggle) if not toggle_var: # Toggle variable doesn't exist (e.g., was filtered out) - remove toggle metadata section.toggle = None return if toggle_var.type != "bool": raise ValueError( f"Section '{section.key}' toggle variable '{section.toggle}' must be type 'bool', " f"but is type '{toggle_var.type}'" ) @staticmethod def _parse_need(need_str: str) -> tuple[str, Optional[Any]]: """Parse a need string into variable name and expected value(s). Supports three formats: 1. New format with multiple values: "variable_name=value1,value2" - checks if variable equals any value 2. New format with single value: "variable_name=value" - checks if variable equals value 3. Old format (backwards compatibility): "section_name" - checks if section is enabled Args: need_str: Need specification string Returns: Tuple of (variable_or_section_name, expected_value) For old format, expected_value is None (means check section enabled) For new format, expected_value is the string value(s) after '=' (string or list) Examples: "traefik_enabled=true" -> ("traefik_enabled", "true") "storage_mode=nfs" -> ("storage_mode", "nfs") "network_mode=bridge,macvlan" -> ("network_mode", ["bridge", "macvlan"]) "traefik" -> ("traefik", None) # Old format: section name """ if "=" in need_str: # New format: variable=value or variable=value1,value2 parts = need_str.split("=", 1) var_name = parts[0].strip() value_part = parts[1].strip() # Check if multiple values are provided (comma-separated) if "," in value_part: values = [v.strip() for v in value_part.split(",")] return (var_name, values) else: return (var_name, value_part) else: # Old format: section name (backwards compatibility) return (need_str.strip(), None) def _is_need_satisfied(self, need_str: str) -> bool: """Check if a single need condition is satisfied. Args: need_str: Need specification ("variable=value", "variable=value1,value2" or "section_name") Returns: True if need is satisfied, False otherwise """ var_or_section, expected_value = self._parse_need(need_str) if expected_value is None: # Old format: check if section is enabled (backwards compatibility) section = self._sections.get(var_or_section) if not section: logger.warning(f"Need references missing section '{var_or_section}'") return False return section.is_enabled() else: # New format: check if variable has expected value(s) variable = self._variable_map.get(var_or_section) if not variable: logger.warning(f"Need references missing variable '{var_or_section}'") return False # Convert actual value for comparison try: actual_value = variable.convert(variable.value) # Handle multiple expected values (comma-separated in needs) if isinstance(expected_value, list): # Check if actual value matches any of the expected values for expected in expected_value: expected_converted = variable.convert(expected) # Handle boolean comparisons specially if variable.type == "bool": if bool(actual_value) == bool(expected_converted): return True else: # String comparison for other types if actual_value is not None and str(actual_value) == str( expected_converted ): return True return False # None of the expected values matched else: # Single expected value (original behavior) expected_converted = variable.convert(expected_value) # Handle boolean comparisons specially if variable.type == "bool": return bool(actual_value) == bool(expected_converted) # String comparison for other types return ( str(actual_value) == str(expected_converted) if actual_value is not None else False ) except Exception as e: logger.debug(f"Failed to compare need '{need_str}': {e}") return False def _validate_dependencies(self) -> None: """Validate section dependencies for cycles and missing references. Raises: ValueError: If circular dependencies or missing section references are found """ # Check for missing dependencies in sections for section_key, section in self._sections.items(): for dep in section.needs: var_or_section, expected_value = self._parse_need(dep) if expected_value is None: # Old format: validate section exists if var_or_section not in self._sections: raise ValueError( f"Section '{section_key}' depends on '{var_or_section}', but '{var_or_section}' does not exist" ) else: # New format: validate variable exists if var_or_section not in self._variable_map: raise ValueError( f"Section '{section_key}' has need '{dep}', but variable '{var_or_section}' does not exist" ) # Check for missing dependencies in variables for var_name, variable in self._variable_map.items(): for dep in variable.needs: dep_var, expected_value = self._parse_need(dep) if expected_value is not None: # Only validate new format if dep_var not in self._variable_map: raise ValueError( f"Variable '{var_name}' has need '{dep}', but variable '{dep_var}' does not exist" ) # Check for circular dependencies using depth-first search # Note: Only checks section-level dependencies in old format (section names) # Variable-level dependencies (variable=value) don't create cycles in the same way visited = set() rec_stack = set() def has_cycle(section_key: str) -> bool: visited.add(section_key) rec_stack.add(section_key) section = self._sections[section_key] for dep in section.needs: # Only check circular deps for old format (section references) dep_name, expected_value = self._parse_need(dep) if expected_value is None and dep_name in self._sections: # Old format section dependency - check for cycles if dep_name not in visited: if has_cycle(dep_name): return True elif dep_name in rec_stack: raise ValueError( f"Circular dependency detected: '{section_key}' depends on '{dep_name}', " f"which creates a cycle" ) rec_stack.remove(section_key) return False for section_key in self._sections: if section_key not in visited: has_cycle(section_key) def is_section_satisfied(self, section_key: str) -> bool: """Check if all dependencies for a section are satisfied. Supports both formats: - Old format: "section_name" - checks if section is enabled (backwards compatible) - New format: "variable=value" - checks if variable has specific value Args: section_key: The key of the section to check Returns: True if all dependencies are satisfied, False otherwise """ section = self._sections.get(section_key) if not section: return False # No dependencies = always satisfied if not section.needs: return True # Check each dependency using the unified need satisfaction logic for need in section.needs: if not self._is_need_satisfied(need): logger.debug(f"Section '{section_key}' need '{need}' is not satisfied") return False return True def is_variable_satisfied(self, var_name: str) -> bool: """Check if all dependencies for a variable are satisfied. A variable is satisfied if all its needs are met. Needs are specified as "variable_name=value". Args: var_name: The name of the variable to check Returns: True if all dependencies are satisfied, False otherwise """ variable = self._variable_map.get(var_name) if not variable: return False # No dependencies = always satisfied if not variable.needs: return True # Check each dependency for need in variable.needs: if not self._is_need_satisfied(need): logger.debug(f"Variable '{var_name}' need '{need}' is not satisfied") return False return True def sort_sections(self) -> None: """Sort sections with the following priority: 1. Dependencies come before dependents (topological sort) 2. Required sections first (in their original order) 3. Enabled sections with satisfied dependencies next (in their original order) 4. Disabled sections or sections with unsatisfied dependencies last (in their original order) This maintains the original ordering within each group while organizing sections logically for display and user interaction, and ensures that sections are prompted in the correct dependency order. """ # First, perform topological sort to respect dependencies sorted_keys = self._topological_sort() # Then apply priority sorting within dependency groups section_items = [(key, self._sections[key]) for key in sorted_keys] # Define sort key: (priority, original_index) # Priority: 0 = required, 1 = enabled with satisfied dependencies, 2 = disabled or unsatisfied dependencies def get_sort_key(item_with_index): index, (key, section) = item_with_index if section.required: priority = 0 elif section.is_enabled() and self.is_section_satisfied(key): priority = 1 else: priority = 2 return (priority, index) # Sort with original index to maintain order within each priority group # Note: This preserves the topological order from earlier sorted_items = sorted(enumerate(section_items), key=get_sort_key) # Rebuild _sections dict in new order self._sections = {key: section for _, (key, section) in sorted_items} def _topological_sort(self) -> List[str]: """Perform topological sort on sections based on dependencies using Kahn's algorithm.""" in_degree = {key: len(section.needs) for key, section in self._sections.items()} queue = [key for key, degree in in_degree.items() if degree == 0] queue.sort( key=lambda k: list(self._sections.keys()).index(k) ) # Preserve original order result = [] while queue: current = queue.pop(0) result.append(current) # Update in-degree for dependent sections for key, section in self._sections.items(): if current in section.needs: in_degree[key] -= 1 if in_degree[key] == 0: queue.append(key) # Fallback to original order if cycle detected if len(result) != len(self._sections): logger.warning("Topological sort incomplete - using original order") return list(self._sections.keys()) return result def get_sections(self) -> Dict[str, VariableSection]: """Get all sections in the collection.""" return self._sections.copy() def get_section(self, key: str) -> Optional[VariableSection]: """Get a specific section by its key.""" return self._sections.get(key) def has_sections(self) -> bool: """Check if the collection has any sections.""" return bool(self._sections) def get_all_values(self) -> dict[str, Any]: """Get all variable values as a dictionary.""" # NOTE: Uses _variable_map for O(1) access return { name: var.convert(var.value) for name, var in self._variable_map.items() } def get_satisfied_values(self) -> dict[str, Any]: """Get variable values only from sections with satisfied dependencies. This respects both toggle states and section dependencies, ensuring that: - Variables from disabled sections (toggle=false) are excluded EXCEPT required variables - Variables from sections with unsatisfied dependencies are excluded - Required variables are always included if their section dependencies are satisfied Returns: Dictionary of variable names to values for satisfied sections only """ satisfied_values = {} for section_key, section in self._sections.items(): # Skip sections with unsatisfied dependencies (even required variables need satisfied deps) if not self.is_section_satisfied(section_key): logger.debug( f"Excluding variables from section '{section_key}' - dependencies not satisfied" ) continue # Check if section is enabled is_enabled = section.is_enabled() if is_enabled: # Include all variables from enabled section for var_name, variable in section.variables.items(): satisfied_values[var_name] = variable.convert(variable.value) else: # Section is disabled - only include required variables logger.debug( f"Section '{section_key}' is disabled - including only required variables" ) for var_name, variable in section.variables.items(): if variable.required: logger.debug( f"Including required variable '{var_name}' from disabled section '{section_key}'" ) satisfied_values[var_name] = variable.convert(variable.value) return satisfied_values def get_sensitive_variables(self) -> Dict[str, Any]: """Get only the sensitive variables with their values.""" return { name: var.value for name, var in self._variable_map.items() if var.sensitive and var.value } def apply_defaults( self, defaults: dict[str, Any], origin: str = "cli" ) -> list[str]: """Apply default values to variables, updating their origin. Args: defaults: Dictionary mapping variable names to their default values origin: Source of these defaults (e.g., 'config', 'cli') Returns: List of variable names that were successfully updated """ # NOTE: This method uses the _variable_map for a significant performance gain, # as it allows direct O(1) lookup of variables instead of iterating # through all sections to find a match. successful = [] errors = [] for var_name, value in defaults.items(): try: variable = self._variable_map.get(var_name) if not variable: logger.warning(f"Variable '{var_name}' not found in template") continue # Store original value before overriding (for display purposes) # Only store if this is the first time config is being applied if origin == "config" and not hasattr(variable, "_original_stored"): variable.original_value = variable.value variable._original_stored = True # Convert and set the new value converted_value = variable.convert(value) variable.value = converted_value # Set origin to the current source (not a chain) variable.origin = origin successful.append(var_name) except ValueError as e: error_msg = f"Invalid value for '{var_name}': {value} - {e}" errors.append(error_msg) logger.error(error_msg) if errors: logger.warning(f"Some defaults failed to apply: {'; '.join(errors)}") return successful def validate_all(self) -> None: """Validate all variables in the collection. Validates: - All variables in enabled sections with satisfied dependencies - Required variables even if their section is disabled (but dependencies must be satisfied) """ errors: list[str] = [] for section_key, section in self._sections.items(): # Skip sections with unsatisfied dependencies (even for required variables) if not self.is_section_satisfied(section_key): logger.debug( f"Skipping validation for section '{section_key}' - dependencies not satisfied" ) continue # Check if section is enabled is_enabled = section.is_enabled() if not is_enabled: logger.debug( f"Section '{section_key}' is disabled - validating only required variables" ) # Validate variables in the section for var_name, variable in section.variables.items(): # Skip non-required variables in disabled sections if not is_enabled and not variable.required: continue try: # Skip autogenerated variables when empty if variable.autogenerated and not variable.value: continue # Check required fields if variable.value is None: # Optional variables can be None/empty if hasattr(variable, "optional") and variable.optional: continue if variable.is_required(): errors.append( f"{section.key}.{var_name} (required - no default provided)" ) continue # Validate typed value typed = variable.convert(variable.value) if variable.type not in ("bool",) and not typed: msg = f"{section.key}.{var_name}" errors.append( f"{msg} (required - cannot be empty)" if variable.is_required() else f"{msg} (empty)" ) except ValueError as e: errors.append(f"{section.key}.{var_name} (invalid format: {e})") if errors: error_msg = "Variable validation failed: " + ", ".join(errors) logger.error(error_msg) raise ValueError(error_msg) def merge( self, other_spec: Union[Dict[str, Any], "VariableCollection"], origin: str = "override", ) -> "VariableCollection": """Merge another spec or VariableCollection into this one with precedence tracking. OPTIMIZED: Works directly on objects without dict conversions for better performance. The other spec/collection has higher precedence and will override values in self. Creates a new VariableCollection with merged data. Args: other_spec: Either a spec dictionary or another VariableCollection to merge origin: Origin label for variables from other_spec (e.g., 'template', 'config') Returns: New VariableCollection with merged data Example: module_vars = VariableCollection(module_spec) template_vars = module_vars.merge(template_spec, origin='template') # Variables from template_spec override module_spec # Origins tracked: 'module' or 'module -> template' """ # Convert dict to VariableCollection if needed (only once) if isinstance(other_spec, dict): other = VariableCollection(other_spec) else: other = other_spec # Create new collection without calling __init__ (optimization) merged = VariableCollection.__new__(VariableCollection) merged._sections = {} merged._variable_map = {} # First pass: clone sections from self for section_key, self_section in self._sections.items(): if section_key in other._sections: # Section exists in both - will merge merged._sections[section_key] = self._merge_sections( self_section, other._sections[section_key], origin ) else: # Section only in self - clone it merged._sections[section_key] = self_section.clone() # Second pass: add sections that only exist in other for section_key, other_section in other._sections.items(): if section_key not in merged._sections: # New section from other - clone with origin update merged._sections[section_key] = other_section.clone( origin_update=origin ) # Rebuild variable map for O(1) lookups for section in merged._sections.values(): for var_name, variable in section.variables.items(): merged._variable_map[var_name] = variable return merged def _merge_sections( self, self_section: VariableSection, other_section: VariableSection, origin: str ) -> VariableSection: """Merge two sections, with other_section taking precedence.""" merged_section = self_section.clone() # Update section metadata from other (other takes precedence) # Only override if explicitly provided in other AND has a value for attr in ("title", "description", "toggle"): other_value = getattr(other_section, attr) if ( hasattr(other_section, "_explicit_fields") and attr in other_section._explicit_fields and other_value ): setattr(merged_section, attr, other_value) merged_section.required = other_section.required # Respect explicit clears for dependencies (explicit null/empty clears, missing field preserves) if ( hasattr(other_section, "_explicit_fields") and "needs" in other_section._explicit_fields ): merged_section.needs = ( other_section.needs.copy() if other_section.needs else [] ) # Merge variables for var_name, other_var in other_section.variables.items(): if var_name in merged_section.variables: # Variable exists in both - merge with other taking precedence self_var = merged_section.variables[var_name] # Build update dict with ONLY explicitly provided fields from other update = {"origin": origin} field_map = { "type": other_var.type, "description": other_var.description, "prompt": other_var.prompt, "options": other_var.options, "sensitive": other_var.sensitive, "extra": other_var.extra, } # Add fields that were explicitly provided, even if falsy/empty for field, value in field_map.items(): if field in other_var._explicit_fields: update[field] = value # For boolean flags, only copy if explicitly provided in other # This prevents False defaults from overriding True values for bool_field in ("optional", "autogenerated", "required"): if bool_field in other_var._explicit_fields: update[bool_field] = getattr(other_var, bool_field) # Special handling for value/default (allow explicit null to clear) if "value" in other_var._explicit_fields: update["value"] = other_var.value elif "default" in other_var._explicit_fields: update["value"] = other_var.value merged_section.variables[var_name] = self_var.clone(update=update) else: # New variable from other - clone with origin merged_section.variables[var_name] = other_var.clone( update={"origin": origin} ) return merged_section def filter_to_used( self, used_variables: Set[str], keep_sensitive: bool = True ) -> "VariableCollection": """Filter collection to only variables that are used (or sensitive). OPTIMIZED: Works directly on objects without dict conversions for better performance. Creates a new VariableCollection containing only the variables in used_variables. Sections with no remaining variables are removed. Args: used_variables: Set of variable names that are actually used keep_sensitive: If True, also keep sensitive variables even if not in used set Returns: New VariableCollection with filtered variables Example: all_vars = VariableCollection(spec) used_vars = all_vars.filter_to_used({'var1', 'var2', 'var3'}) # Only var1, var2, var3 (and any sensitive vars) remain """ # Create new collection without calling __init__ (optimization) filtered = VariableCollection.__new__(VariableCollection) filtered._sections = {} filtered._variable_map = {} # Filter each section for section_key, section in self._sections.items(): # Create a new section with same metadata filtered_section = VariableSection( { "key": section.key, "title": section.title, "description": section.description, "toggle": section.toggle, "required": section.required, "needs": section.needs.copy() if section.needs else None, } ) # Clone only the variables that should be included for var_name, variable in section.variables.items(): # Include if used OR if sensitive (and keep_sensitive is True) should_include = var_name in used_variables or ( keep_sensitive and variable.sensitive ) if should_include: filtered_section.variables[var_name] = variable.clone() # Only add section if it has variables if filtered_section.variables: filtered._sections[section_key] = filtered_section # Add variables to map for var_name, variable in filtered_section.variables.items(): filtered._variable_map[var_name] = variable return filtered def get_all_variable_names(self) -> Set[str]: """Get set of all variable names across all sections. Returns: Set of all variable names """ return set(self._variable_map.keys())